Background: Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices.
Objectives: Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-based subpopulations.
Methods: The distribution of iAs in drinking water was estimated by population, weighting the iAs concentrations for each drinking water utility in the Second Six-Year Review data set. To estimate the distribution of iAs concentrations in rice ingested by U.S. consumers, 54 grain-specific, production-weighted composites of rice obtained from U.S. mills were extracted and speciated using both a quantitative dilute nitric acid extraction and speciation (DNAS) and an gastrointestinal assay to provide an upper bound and bioaccessible estimates, respectively. Daily drinking water intake and rice consumption rate distributions were developed using data from the (WWEIA) study.
Results: Using these data sets, the Stochastic Human Exposure and Dose Simulation (SHEDS) model estimated mean iAs exposures from drinking water and rice were 4.2 μg/day and 1.4 μg/day, respectively, for the entire U.S. population. The Tribal, Asian, and Pacific population exhibited the highest mean daily exposure of iAs from cooked rice (2.8 μg/day); the mean exposure rate for children between ages 1 and 2 years in this population is 0.104 μg/kg body weight (BW)/day.
Conclusions: An average consumer drinking 1.5 L of water daily that contains between 2 and 3 ng iAs/mL is exposed to approximately the same amount of iAs as a mean Tribal, Asian, and Pacific consumer is exposed to from rice. https://doi.org/10.1289/EHP418.
Background: Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices.
Objectives: Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-based subpopulations.
Methods: The distribution of iAs in drinking water was estimated by population, weighting the iAs concentrations for each drinking water utility in the Second Six-Year Review data set. To estimate the distribution of iAs concentrations in rice ingested by U.S. consumers, 54 grain-specific, production-weighted composites of rice obtained from U.S. mills were extracted and speciated using both a quantitative dilute nitric acid extraction and speciation (DNAS) and an gastrointestinal assay to provide an upper bound and bioaccessible estimates, respectively. Daily drinking water intake and rice consumption rate distributions were developed using data from the (WWEIA) study.
Results: Using these data sets, the Stochastic Human Exposure and Dose Simulation (SHEDS) model estimated mean iAs exposures from drinking water and rice were [Formula: see text] and [Formula: see text], respectively, for the entire U.S. population. The Tribal, Asian, and Pacific population exhibited the highest mean daily exposure of iAs from cooked rice ([Formula: see text]); the mean exposure rate for children between ages 1 and 2 years in this population is [Formula: see text] body weight (BW)/day.
Conclusions: An average consumer drinking 1.5 L of water daily that contains between 2 and [Formula: see text] is exposed to approximately the same amount of iAs as a mean Tribal, Asian, and Pacific consumer is exposed to from rice. https://doi.org/10.1289/EHP418.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726353 | PMC |
http://dx.doi.org/10.1289/EHP418 | DOI Listing |
The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiangan South Road, Xiamen, Fujian, 361102, P. R. China.
Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression.
View Article and Find Full Text PDFRen Fail
December 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: While there are numerous benefits to tea consumption, its long-term impact on patients with chronic kidney disease (CKD) remains unclear.
Method: Our analysis included 17,575 individuals with CKD from an initial 45,019 participants in the National Health and Nutrition Examination Survey (NHANES) (1999-2018). Individuals with extreme dietary habits, pregnancy, or non-CKD conditions were excluded.
Sci Rep
January 2025
Research Laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, University of Science and Technology, Narmak, Tehran, 1684613114, Iran.
This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, 310021, China.
Disinfection is a critical process to ensure the safety of drinking water. To curb the spread of various bacteria and viruses, disinfectants are extensively employed in communities, hospitals, sewage treatment plants, and other settings. However, disinfectants can produce disinfection by-products (DBPs) that threaten human health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!