Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production in Pakistan and northwestern India. The disease is caused by monopartite begomoviruses in association with a specific DNA satellite, Cotton leaf curl Multan betasatellite. The virus-betasatellite complex is also frequently associated with another DNA satellite-like molecule; an alphasatellite. A quantitative real-time PCR (qPCR) assay to detect all three components of the monopartite begomovirus/betasatellite/alphasatellite complex which causes CLCuD was established. This was used to investigate the relationship between symptoms and virus/satellite titre. Not surprisingly the analysis showed that, overall, there was a reasonable correlation between symptom severity and virus/satellite titre - more severe symptoms usually being associated with more virus/satellite. However, cotton plants were identified with no or very mild symptoms with relatively high virus/satellite titres and plants with severe symptoms but relatively low virus/satellite titres. This may be attributed to the resistance/susceptibility of the cotton variety - tolerant plants being able to sustain a relatively high virus/satellite titre whilst exhibiting mild symptoms. The usefulness of this qPCR procedure in the screening for resistance in cotton against CLCuD is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2017.05.012 | DOI Listing |
Mol Plant Pathol
January 2025
Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China.
Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.
View Article and Find Full Text PDFPlant Biotechnol J
December 2024
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
During the field visits in growing season of 2022 in Dammam Region of Saudi Arabia, begomovirus-like symptoms including leaf curling, leaf cupping, leaf distortion, vein thickening and reduced leaf size were observed in squash and cucumber fields. Twenty-five samples were collected from each crop and PCR amplification was done using general diagnostic begomovirus primers (AC-1048/AV-494 and Begomo I/Begomo II). The obtained results showed desired sized amplified DNA fragments (550 bp and 1.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
Tomato yellow leaf curl virus-Oman (TYLCV-OM), a variant of the Tomato yellow leaf curl virus-Iran (TYLCV-IR) strain, was identified in 2005 as the cause of tomato yellow leaf curl disease (TYLCD) in Oman and is associated with a betasatellite namely as Tomato leaf curl betasatellite (ToLCB). Surveys were carried out from three diverse Governorates of Oman to investigate the correlation between the betasatellite and the virus. The visual assessment and scoring of infected tomato plants in the field revealed that the association of betasatellite with the disease was highest in Sharqia at 77%, followed by Dakhlia at41% and lowest in Batinah at30% .
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, (CPMB&B), Tamil Nadu Agricultural University, Coimbatore, 641 037, India.
Background: Tomato (Solanum lycopersicum L.) is a widely cultivated crop in tropical regions, but its production is often hampered by significant losses attributed to diseases like tomato leaf curl virus (ToLCV), fusarium wilt and root-knot nematode.
Methods And Results: This study employed an integrated approach utilizing both co-dominant and dominant SCAR markers, selected for specific resistance genes (ToLCV-Ty-1, Ty-2, Ty-2, Fusarium wilt (Race-2)-I-2, and Root-knot nematode-Mi-1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!