Carpomya vesuviana (Costa; Diptera: Tephritidae) is an agricultural pest that causes serious damage to jujube fruits. However, the mechanism of olfaction, which is critical for host identification, is not well understood in this pest. In this study, we have identified for the first time five protein types involved in the olfactory signal transduction of C. vesuviana by using transcriptome sequencing. These include 6 odorant-binding proteins (OBPs), 15 odorant receptors (ORs), 22 gustatory receptors (GRs), 2 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). Amino acids alignment and phylogenetic analysis showed that all 6 OBPs have a signal peptide at their respective N-termini with four OBPs belonging with the classic OBPs, and OBP2 and OBP5 belonging to the Minus-C family. OBP3 clustered with the OBP83a/83b clade, which comprised pheromone binding protein related proteins (PBPRPs). Moreover, volatiles from C. vesuviana adults and its host plants were collected and identified by using solid phase microextraction (SPME) and gas-chromatography/mass spectrometry (GC/MS). The results indicated that male adults emitted nonanal, and five other compounds, caryophyllene, chamigrene, camphene, (Z)-3-hexen-1-ol acetate, and ocimene were identified in the fruits of jujubes. Electroantennogram (EAG) assays revealed that adult C. vesuviana responded to all six compounds along with two additional pheromones (geranyl acetate and α-farnesene) from other tephritids and the values ranged from 0.50mV to 1.26mV. To further explore the interaction between OBPs and volatiles, competitive binding assays were carried out. The results showed that only CvesOBP2 had binding affinity to (Z)-3-hexen-1-ol acetate. OBP5 and OBP6 exhibited broad spectrum binding to compounds with relatively low molecular weights, and OBP1 and OBP4 had some affinity to caryophyllene and chamigrene. However, OBP3 exhibited relatively high binding affinity to α-farnesene. The findings of this study provide insights into the olfactory mechanisms and the potential functions of OBPs in the olfactory reception pathway in C. vesuviana. The OBPs identified in this study could be used as potential targets to develop attractants to monitor this insect pest for effective pest control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2017.05.013DOI Listing

Publication Analysis

Top Keywords

binding affinity
12
carpomya vesuviana
8
caryophyllene chamigrene
8
z-3-hexen-1-ol acetate
8
binding
7
obps
7
vesuviana
6
proteins
5
identification odorant
4
odorant binding
4

Similar Publications

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of L. subsp. falezlez (Coss.

View Article and Find Full Text PDF

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

Eumycetoma, a chronic fungal infection caused by , is a neglected tropical disease characterized by tumor-like growths that can lead to permanent disability and deformities if untreated. Predominantly affecting regions in Africa, South America, and Asia, it imposes significant physical, social, and economic burdens. Current treatments, including antifungal drugs like itraconazole, often show variable efficacy, with severe cases necessitating surgical intervention or amputation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!