The glass transition and enthalpy recovery of a single polystyrene ultrathin film using Flash DSC.

J Chem Phys

Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409-3121, USA.

Published: May 2017

The kinetics of the glass transition are measured for a single polystyrene ultrathin film of 20 nm thickness using Flash differential scanning calorimetry (DSC). T is measured over a range of cooling rates from 0.1 to 1000 K/s and is depressed compared to the bulk. The depression decreases with increasing cooling rate, from 12 K lower than the bulk at 0.1 K/s to no significant change at 1000 K/s. Isothermal enthalpy recovery measurements are performed from 50 to 115 °C, and from these experiments, the temperature dependence of the induction time along the glass line is obtained, as well as the temperature dependence of the time scale required to reach equilibrium, providing a measure of the shortest effective glassy relaxation time and the longest effective equilibrium relaxation time, respectively. The induction time for the ultrathin film is found to be similar to the bulk at all temperatures presumably because the T values are the same due to the use of a cooling rate of 1000 K/s prior to the enthalpy recovery measurements. On the other hand, the times required to reach equilibrium for the ultrathin film and bulk are similar at 100 °C, and considerably shorter for the ultrathin film at 90 °C, consistent with faster dynamics under nanoconfinement at low temperatures. The magnitude of the "T depression" is smaller when using the equilibrium relaxation time from the structural recovery experiment as a measure of the dynamics than when measuring T after a cooling experiment. A relaxation map is developed to summarize the results.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4979126DOI Listing

Publication Analysis

Top Keywords

ultrathin film
20
enthalpy recovery
12
1000 k/s
12
relaxation time
12
glass transition
8
single polystyrene
8
polystyrene ultrathin
8
cooling rate
8
recovery measurements
8
temperature dependence
8

Similar Publications

Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.

View Article and Find Full Text PDF

Desired Color Diversity of Carbon Fiber with Excellent Environmental Super-Durability and Remarkable Flame Retardancy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.

Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Limited by the adsorption and diffusion rate of water molecules, traditional humidity sensors, such as those based on polymer electrolytes, porous ceramics, and metal oxides, typically have long response times, which hinder their application in monitoring transient humidity changes. Here we present an ultrafast humidity sensor with a millisecond-level response. The sensor is prepared by assembling monolayer graphene oxide quantum dots on silica microspheres using a simple electrostatic self-assembly technique.

View Article and Find Full Text PDF

Ultrathin atomic layer deposited ceria films (< 20 nm) are capable of H2 heterolytic activation at room temperature, undergoing a significant reduction regardless of the absolute pressure, as measured under in-situ conditions by near ambient pressure X-ray photoelectron spectroscopy. ALD-ceria can gradually reduce as a function of H2 concentration under H2/O2 environments, especially for diluted mixtures below 10%. At room temperature, this reduction is limited to the surface region, where the hydroxylation of the ceria surface induces a charge transfer towards the ceria matrix, reducing Ce4+ cations to Ce3+.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!