Novel N-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine.

J Hazard Mater

College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China. Electronic address:

Published: September 2017

The imino group-contained porous organic polytriphenylamine, which originated from diphenylamine and 1,3,5-tris(4-bromophenyl)benzene, was designedly synthesized though Buchwald-Hartwig coupling reaction. The basic properties including morphologies, structure and thermal stability of the resulting POPs were investigated by scanning electron microscope(SEM), thermo gravimeter analysis (TGA), C CP/MAS solid state NMR and Fourier transform infrared spectroscope (FTIR). The pore size distribution of POPs present uniform mesoporous of sizes less than 50nm. Scanning electron microscope images show that the resulting POPs formed as an aggregation composed of nanospheres. The POPs were employed as a physicochemical stable porous medium for removal of radioactive iodine and an iodine uptake of up to 382wt% was obtained. To our knowledge, this is one of the highest adsorption value reported to date. Based on these findings, the resulting POPs shows great potential in the removal of radioactive iodine at different states, through a green, environmentally friendly, and sustainable way.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2017.05.041DOI Listing

Publication Analysis

Top Keywords

porous organic
8
scanning electron
8
removal radioactive
8
radioactive iodine
8
pops
5
novel n-rich
4
n-rich porous
4
organic polymers
4
polymers extremely
4
extremely high
4

Similar Publications

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a class of porous materials that are of topical interest for their utility in water-related applications. Nevertheless, molecular-level insight into water-MOF interactions and MOF hydrolytic reactivity remains understudied. Herein, we report two hydrolytic pathways leading to either structural stability or framework decomposition of a MOF (ZnMOF-1).

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are considered advanced class materials due to their exotic structural and optical properties. The abundance of starting monomers with variable linkage motifs may give rise to multiple conformations in either 2D or 3D fashion. Tailoring of the abovementioned properties has facilitated the application of COFs in a wide range of applications, which are strongly correlated with energy conversion schemes.

View Article and Find Full Text PDF

Robust Immobilization and Activity Preservation of Enzymes in Porous Frameworks by Silica-Based "Inorganic Glue".

Adv Mater

December 2024

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.

The development of novel methods to enhance enzyme-carrier interactions in situ, at a feasible cost, and on a large scale is crucial for improving the stability and durability of current immobilized enzyme systems used in industrial settings. Here, a pioneering approach termed "silica-based inorganic glue" is proposed, which utilizes protein-catalyzed silicification to fix enzyme within porous matrix while preserving enzyme activity. This innovative strategy offers several key benefits, including conformational stabilization of enzymes, improved interactions between enzymes and the matrix, prevention of enzyme leakage, and mitigation of pore blocking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!