High mobility group box 1 (HMGB1) is a key member of the "danger associated molecular patterns" (DAMPs), which can localize in various compartments of the cell, and plays important roles in systemic inflammation. In the present study, monoclonal antibodies (MAbs) specifically against chicken HMGB1 were generated. The open reading frame of chicken HMGB1 was amplified by RT-PCR and cloned into the prokaryotic expression vector pET-28a to construct a recombinant plasmid pET-chHMGB1. The recombinant chicken HMGB1 protein was expressed in Escherichia coli Rosetta under IPTG induction and then purified by Ni-NTA Purification System. BALB/c mice were immunized with the purified recombinant HMGB1 protein, and three strains of hybridoma cells named 1F10, 8C11, and 4D8 secreting MAbs of chicken HMGB1 were obtained by hybridoma technique. Western blot and indirect immunofluorescence assays showed that the endogenous HMGB1 in various cell lines and glycosylated HMGB1 could both be specifically recognized by the prepared MAbs. This work indicated that the MAbs against chicken HMGB1 would be a valuable tool for further studies of HMGB1-mediated signaling in virus-infected cells and investigates the role of HMGB1 in avian virus pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/mab.2017.0010 | DOI Listing |
J Anim Sci Biotechnol
March 2024
Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
Background: The reproductive performance of chickens mainly depends on the development of follicles. Abnormal follicle development can lead to decreased reproductive performance and even ovarian disease among chickens. Chicken is the only non-human animal with a high incidence of spontaneous ovarian cancer.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2024
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China. Electronic address:
Interleukin (IL)-2 has been reported to regulate neutrophil functions in humans, mice, pigs and chicken although it is a key regulator of T cells. Consistently, we found that grass carp (Ctenopharyngodon idellus) interleukin-2 (gcIl-2) is capable of modulating the antimicrobial activities of neutrophils via regulating granzyme B- and perforin-like gene expression in our previous study. In the present study, stimulation of gcIl-2 on neutrophil extracellular traps (NETs) formation in grass carp neutrophils was demonstrated by detecting free DNA release, histone H3 citrullination and morphological changes of the cells.
View Article and Find Full Text PDFMol Nutr Food Res
December 2023
Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, P. R. China.
Scope: Puerarin has possessed a wide range of pharmacological activities. However, little is known about the protective effects of puerarin on the oxidized oil-induced injury. Here, the antioxidant and anti-inflammatory effects of puerarin are described using a chicken model.
View Article and Find Full Text PDFSci Rep
June 2023
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
Burn injury is associated with muscle wasting, though the involved signaling mechanisms are not well understood. In this study, we aimed to examine the role of high mobility group box 1 (HMGB1) in signaling hyper-inflammation and consequent skeletal muscle impairment after burn. Sprague Dawley rats were randomly assigned into three groups: (1) sham burn, (2) burn, (3) burn/treatment.
View Article and Find Full Text PDFPoult Sci
June 2023
National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:
Marek's disease (MD) is a lymphoproliferative neoplastic disease caused by Marek's disease virus (MDV). Previous studies have showed that DNA methylation was involved in MD development, but systematic studies are still lacking. Herein, we performed whole genome bisulfite sequencing (WGBS) and RNA-seq in MDV-infected tumorous spleens (IN), noninfected spleens (NoIN), and survivor (SUR) spleens of chickens to identify the genes playing important roles in MD tumor transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!