Shaofu Zhuyu decoction (SFZYD, also known as Sobokchugeo-tang), a classical prescription drug in traditional East Asian medicine, has been used to treat blood stasis syndrome (BSS). Hepatic steatosis is the result of excess caloric intake, and its pathogenesis involves internal retention of phlegm and dampness, blood stasis, and liver Qi stagnation. To evaluate the effects of treatment with SFZYD on obesity-induced inflammation and hepatic steatosis, we fed male C57BL/6N mice a high fat diet (HFD) for 8 weeks and then treated them with SFZYD by oral gavage for an additional 4 weeks. The results of histological and biochemical examinations indicated that SFZYD treatment ameliorates systemic inflammation and hepatic steatosis. A partial least squares-discriminant analysis (PLS-DA) scores plot of serum metabolites showed that HFD mice began to produce metabolites similar to those of normal chow (NC) mice after SFZYD administration. We noted significant alterations in the levels of twenty-seven metabolites, alterations indicating that SFZYD regulates the TCA cycle, the pentose phosphate pathway and aromatic amino acid metabolism. Increases in the levels of TCA cycle intermediate metabolites, such as 2-oxoglutaric acid, isocitric acid, and malic acid, in the serum of obese mice were significantly reversed after SFZYD treatment. In addition to inducing changes in the above metabolites, treatment with SFZYD also recovered the expression of genes related to hepatic mitochondrial dysfunction, including Ucp2, Cpt1α, and Ppargc1α, as well as the expression of genes involved in lipid metabolism and inflammation, without affecting glucose uptake or insulin signaling. Taken together, these findings suggest that treatment with SFZYD ameliorated obesity-induced systemic inflammation and hepatic steatosis by regulating inflammatory cytokine and adipokine levels in the circulation and various tissues. Moreover, treatment with SFZYD also reversed alterations in the levels of metabolites of the TCA cycle, the pentose phosphate pathway and aromatic amino acid metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453538 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178514 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!