Raman imaging is a powerful method to identify and detect chemicals, but the long acquisition time required for full spectroscopic Raman images limits many practical applications. Compressive sensing and compressed ultrafast photography have recently demonstrated the acquisition of multi-dimensional data sets with single-shot detection. In this Letter, we demonstrate the utilization of compressed sensing for single-shot compressed Raman imaging. In particular, we use this technique to demonstrate the identification of two similarly white substances in one image via the recovered two-dimensional array of Raman spectra. This technique can be further extended by coupling the compressed sensing apparatus with a microscope for compressed hyperspectral imaging microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.42.002169 | DOI Listing |
J Mater Chem B
January 2025
Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
The critical need for rapid cancer diagnosis and related illnesses is growing alongside the current healthcare challenges, unfavorable prognosis, and constraints in diagnostic timing. As a result, emphasis on surface-enhanced Raman spectroscopy (SERS) diagnostic methods, including both label-free and labelled approaches, holds significant promise in fields such as analytical chemistry, biomedical science, and physics, due to the user-friendly nature of SERS. Over time, the SERS detection sensitivity and specificity with nanostructured materials for SERS applications (NMs-SERS) in different media have been remarkable.
View Article and Find Full Text PDFA compact and easy-to-use high-bandwidth autobalanced detector for microscopy is presented, being able to remove up to 67 dB of correlated noise, thus, allowing for shot-noise limited image acquisition even in the presence of high laser excess noise. Detecting a 20 MHz modulation frequency at half the repetition rate of the driving pulsed laser, the autobalanced detector is able to exploit an extra +3 dB increase in signal-to-noise ratio due to the coherent addition of modulation sidebands in stimulated Raman scattering. Pixel-by-pixel noise canceling and correction of sample transmission losses are possible for pixel scan rates of more than 1.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Applied Photonics, INESC TEC, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom.
The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!