Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This Letter reports the electro-optical (EO) effect of Poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofibers colloid in a polymer micro-fluidic EO cell. P3HT nanofibers are high aspect ratio semiconducting nanostructures, and can be collectively aligned by an external alternating electric field. Optical transmission modulated by the electric field is a manifestation of the electro-optical effect due to high inner crystallinity of P3HT nanofibers. According to our results, the degree of alignment reaches a maximum at 0.6 V/μm of electric field strength, implying a big polarizability value due to geometry and electrical properties of P3HT nanofibers. We believe that one-dimensional crystalline organic nanostructures have a large potential in EO devices due to their significant anisotropy, wide variety of properties, low actuation voltages, and opportunity to be tailored via adjustment of the fabrication process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.42.002157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!