Short-term visual prediction is important both in biology and robotics. It allows us to anticipate upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, liquid state machines have been proposed as a biologically inspired method to perform asynchronous prediction without a model. However, they have so far only been demonstrated in simulation or small scale pre-processed camera images. In this paper, we use a liquid state machine to predict over the whole [Formula: see text] event stream provided by a real dynamic vision sensor (DVS, or silicon retina). Thanks to the event-based nature of the DVS, the liquid is constantly fed with data when an object is in motion, fully embracing the asynchronicity of spiking neural networks. We propose a smooth continuous representation of the event stream for the short-term visual prediction task. Moreover, compared to previous works (2002 Neural Comput. 2525 282-93 and Burgsteiner H et al 2007 Appl. Intell. 26 99-109), we scale the input dimensionality that the liquid operates on by two order of magnitudes. We also expose the current limits of our method by running experiments in a challenging environment where multiple objects are in motion. This paper is a step towards integrating biologically inspired algorithms derived in theoretical neuroscience to real world robotic setups. We believe that liquid state machines could complement current prediction algorithms used in robotics, especially when dealing with asynchronous sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/aa7663 | DOI Listing |
J Am Soc Nephrol
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
Background: Cardiac surgery-associated acute kidney injury is a common serious complication after cardiac surgery. Currently, there are no specific pharmacological therapies. Our understanding of its pathophysiology remains preliminary.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Biological Sciences, UESC - Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil.
In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
Various technical methodologies are required to accurately detect substances of different chemical and pharmacological properties in biological samples, which are increasing in number and variety daily. Therefore, laboratories where many samples and different factors are analyzed simultaneously need methods with easy sample preparation, short analysis times and low analysis costs. In this study, the objective was to scan substances susceptible to chemical degradation, amenable to analysis without hydrolysis, and exhibiting short-term stability by employing a straightforward, expeditious, and cost-efficient method.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Omniphobic surfaces, which repel virtually any liquid regardless of its wettability, have been developed using doubly re-entrant microstructures. Although various microfabrication techniques have been explored, these often require multiple complex steps. In this study, reaction-diffusion photolithography (RDP) is used to fabricate micropost arrays with doubly re-entrant geometries through a single-step ultraviolet (UV) exposure process.
View Article and Find Full Text PDFJ Xenobiot
December 2024
State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China.
The increased use of chlorantraniliprole and fludioxonil has sparked concerns about their residues and impact on the soil microbiome, highlighting an urgent issue requiring attention. This study investigates the residue dynamics of corn after chlorantraniliprole and fludioxonil treatments, as well as their effects on soil enzyme activity and microbial community structure. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed a significant decrease in chlorantraniliprole and fludioxonil residues in the soil after combined application, especially with chlorantraniliprole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!