Acute myocardial infarction (heart attack) is the fifth leading cause of death in the United States (Dariush et al., Circulation, 2015, 131, e29-e322). This highlights the need for early, rapid, and sensitive detection of its occurrence and severity through assaying cardiac biomarkers in human fluids. Herein we report chip-based fabrication of the first label-free, nanoplasmonic biosensor to assay cardiac troponin T (cTnT) in human biofluids (plasma, serum, and urine) with high specificity. The sensing mechanism is based on the adsorption model that measures the localized surface plasmon resonance (LSPR) wavelength shift of anti-cTnT functionalized gold triangular nanoprisms (Au TNPs) induced by a change of their local dielectric environment upon binding of cTnT. We demonstrate that controlled manipulation of the sensing volume and decay length of Au TNPs together with an appropriate surface functionalization and immobilization of anti-cTnT onto TNPs allows us to achieve a limit of detection (LOD) of our cTnT assay at attomolar concentration (∼15 aM) in human plasma. This LOD is at least 50-fold more sensitive than that of other label-free techniques. Furthermore, we demonstrate excellent sensitivity of our sensors in human serum and urine. Importantly, our chip-based fabrication strategy is extremely reproducible. We believe our powerful analytical tool for detection of cTnT directly in human biofluids using this highly reproducible, label-free LSPR sensor will have great potential for early diagnosis of heart attack and thus increase patients' survival rate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7an00430cDOI Listing

Publication Analysis

Top Keywords

human biofluids
12
cardiac troponin
8
label-free nanoplasmonic
8
heart attack
8
chip-based fabrication
8
serum urine
8
human
6
achieving biosensing
4
biosensing attomolar
4
attomolar concentrations
4

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Mapping organism-wide single cell mRNA expression linked to extracellular vesicle biogenesis, secretion and cargo.

Function (Oxf)

January 2025

Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, USA.

Extracellular vesicles (EVs) are functional lipid-bound nanoparticles trafficked between cells and found in every biofluid. It is widely claimed that EVs can be secreted by every cell, but the quantity and composition of these EVs can differ greatly among cell types and tissues. Defining this heterogeneity has broad implications for EV-based communication in health and disease.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid bilayer particles released by virtually all cells, with prominent roles in both physiological and pathological processes. The size, number, and molecular composition of released EVs correlate to the cells of origin, modulated by the cell's environment and pathologic state. The proteins, DNA, RNA, and protein cargo carried by EVs are protected by degradation, with a prominent role in targeted intercellular signaling.

View Article and Find Full Text PDF

Several microRNAs (miRNAs) emerged as powerful regulators of fibrotic processes, "fibromiRs", and can also influence the expression of genes responsible for the generation of reactive oxygen species, "redoximiRs". We aimed to investigate whether plasma exosomes from hypertensive and diabetes patients are enriched in fibromiRs and redoximiRs using deep sequencing technology and their association with relevant signalling pathways implicated in oxidative stress and fibrogenesis by GO terms and KEGG pathways. RNA-Seq analysis from P-EXO identified 31 differentially expressed (DE) miRNAs in patients compared to controls, of which 77% are biofluid specific.

View Article and Find Full Text PDF

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!