Water-monosaccharide coupled interactions are essential for the function, stability, and dynamics of all glycans. Using molecular dynamics simulations, we investigated the effects of temperature, concentration, and monosaccharide isomer on the hydration structure and water dynamics in the hydration shell of monosaccharides in solution. We found that perturbations of the hydrogen-bond (H-bond) network in the first hydration shell around each monosaccharide molecule can be separated into two regions: one rich in water molecules with donor H-bonds (in the 2.4-2.8 Å region) and the other rich in water molecules with abundant acceptor H-bonds (in the 2.8-3.3 Å region). Moreover, we investigated the dependencies of clustering and conversion of the conformers of the monosaccharides on temperature and concentration. Increasing the concentration enhances monosaccharide clustering in all the monosaccharide solutions, while cluster formation does not depend on temperature. In the clusters, some water molecules in the hydration shell are replaced with monosaccharide oxygen atoms, which contributes to the shrinkage of the hydration shell with increasing monosaccharide concentration. The monosaccharides basically adopt one of two conformers, the stable chair or the unstable boat conformer. We revealed that the hydration structures of the boat and chair conformers were dramatically different. As the temperature increases, the content of the chair conformer decreases. Thus, the conversion of conformers strongly affects the hydration structure around the monosaccharide. These results are critical to understand the important roles of the hydration structure in glycan solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp02392hDOI Listing

Publication Analysis

Top Keywords

hydration structure
16
hydration shell
16
temperature concentration
12
water molecules
12
hydration
9
effects temperature
8
isomer hydration
8
monosaccharide
8
structure monosaccharide
8
monosaccharide solutions
8

Similar Publications

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Degradation and defluorination of CF PFASs with different functional groups by VUV/UV-based reduction and oxidation processes.

J Hazard Mater

January 2025

Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea. Electronic address:

Structural diversity can affect the degradability of per- and polyfluoroalkyl substances (PFASs) during water treatment. Here, three PFASs with different functional groups-CF-R, PFHpA, PFHxS, and 6:2 FTS-were degraded using vacuum ultraviolet (VUV/UV)-based treatments. While fully fluorinated PFASs-PFHpA and PFHxS-were degraded faster in the VUV/UV/sulfite reaction than in VUV/UV photolysis, VUV/UV photolysis was more effective for degrading 6:2 FTS by OH radicals produced through photolysis of water.

View Article and Find Full Text PDF

Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Mechanical Strength and Mechanism Analysis of Silt Soil Cured by Straw Ash-Calcium Carbide Slag.

Materials (Basel)

January 2025

Heilongjiang Provincial Key Laboratory of Road Structure and Green Ecological Technology, Northeast Forestry University, Harbin 150090, China.

Large-scale engineering projects frequently involve pit excavation and wetland landfill operations, resulting in significant silt accumulation that occupies land and adversely affects the environment. Curing technology offers a solution for reusing this waste silt. In this study, straw ash and calcium carbide slag are proposed as effective curing agents for silt soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!