Patterns of geographic variation in tree-climbing ability of Peromyscus maniculatus were used to examine the influence of spatial variation in natural selection and gene flow on the genetic divergence of climbing behavior among populations. Offspring of adults of two subspecies sampled from 10 localities in montane conifer forest, conifer woodland, and desert scrub/grassland habitats were raised in the laboratory and tested to determine their tree-climbing ability (the maximum diameter artificial rod that a mouse could climb). Comparisons of mean rod-climbing scores revealed that individuals of P. m. rufinus sampled from montane conifer forest and conifer woodland in Arizona were better climbers than P. m. sonoriensis sampled from conifer woodland and desert habitats in Nevada. This result was consistent with the hypothesis that natural selection has produced large-scale adaptation in climbing behavior. However, the climbing ability of P. m. sonoriensis sampled from conifer woodland habitats on isolated mountaintops in Nevada has not evolved in response to natural selection to the degree expected. In addition, populations sampled from desert grassland habitat, adjacent to woodland P. m. rufinus in Arizona, have climbing abilities that are not significantly different from conifer woodland populations. These observations indicate that local adaptation was constrained. An estimate of the heritability of climbing ability (h = 0.352 ± 0.077) indicates that lack of a response to selection was not due to the absence of additive genetic variation. In addition, regressions of interpopulation differences on the degree of geographic isolation between pairs of populations do not support the hypothesis that gene flow between habitats has constrained evolution. Instead, a combination of historical events and insufficient time to respond to selection appears to have influenced geographic variation and the spatial scale of adaptation in climbing ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1558-5646.1990.tb03817.x | DOI Listing |
Molecules
December 2024
Department of Chemistry, Poznań University of Life Sciences, 60-637 Poznan, Poland.
This study focused on determining the content of bioactive compounds in selected fruits of wild shrubs. The plants selected for the study were from the Rosaceae and Adoxaceae families. Particular attention should be paid to the fruits of plants commonly growing in Poland (temperate climate), such as , , and .
View Article and Find Full Text PDFAnimals (Basel)
December 2024
School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100107, China.
The forest musk deer () and Siberian roe deer () are browsers with a broad sympatric distribution in North and Southwest China. However, little is known about their spatial utilization of microhabitats and habitats. This study, conducted on Huanglong Mountain in China, analyzed the defecation site distribution, indicating preferences of forest musk deer and Siberian roe deer for their habitat demands.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Forestry, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. Electronic address:
The readiness of leaf-litter to burn in the presence of fire differs greatly between species. Thus, forests composed of different species vary in their susceptibility to fire. Fire susceptibility of forests may also differ from the arithmetic means of flammability of their component species, i.
View Article and Find Full Text PDFPeerJ
January 2025
College of Forestry, Guizhou University, Guiyang, Guizhou, China.
Masson pine ( Lamb.) and Chinese fir ( (Lamb.) Hook.
View Article and Find Full Text PDFScience
January 2025
Department of Biology & Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK.
The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!