A genetic model for the dynamics of a quantitative trait is analyzed in terms of gene frequencies, linkage disequilibria, and environmental effects on the trait. In a randomly mating population, at each generation progeny move to niches where they are subject to weak Gaussian selection on the trait, with different fitness levels in the different niches. Initially, the variability of the trait is due to additive loci with heterozygous homeostasis. The evolution of plasticity is then described in terms of the invasion of the population by genetic modifiers that may epistatically affect the trait, its optimum in each niche, the strengths of selection, and other parameters characteristic of the niches. We show that the evolution of trait means within niches depends on the overall evolution in the whole system, and in general, optimum phenotypic values are not attained. The reaction norm and genotype-environment interaction may evolve even if the only effects of the modifier are on individual rates of dispersal, or on fitness effects resulting from the different environments in the different niches; this evolution does not require that the modifier affect parameters that influence the values of the trait. It is conjectured that in the least frequently reached niches with low fitness levels, the deviations from the trait optima should be larger than those in more commonly experienced and less stringent niches. Our analysis makes explicit the different contribution of between- and within-niche effects on the evolutionary dynamics of phenotypic plasticity in heterogeneous environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1558-5646.1996.tb03867.x | DOI Listing |
PLoS Biol
January 2025
Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.
View Article and Find Full Text PDFPLoS One
January 2025
BASF- Global Agricultural Solutions, Durham, North Carolina, United States of America.
Trichoderma spp. are among the most studied biocontrol agents. While extensive work has been done to understand Trichoderma antagonistic mechanisms, additional research is needed to fully understand how Trichoderma spp.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain.
Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μ values ranging from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!