Cell-Free Synthesis of Plant Receptor Kinases.

Methods Mol Biol

Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

Published: March 2018

The wheat germ cell-free protein synthesis system has been used as a eukaryotic protein production system since it was first reported in 1964. Although initially the productivity of this system was not very high, it has now become one of the most versatile protein production systems, thanks to the enhancements made by several groups. In this chapter, we report a protein production method for plant receptor kinases using the wheat cell-free system. We describe a method for the preparation of a cell-free extract from wheat germ, the split-primer PCR method for preparation of transcription templates, and the bilayer cell-free protein synthesis method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7063-6_4DOI Listing

Publication Analysis

Top Keywords

protein production
12
plant receptor
8
receptor kinases
8
kinases wheat
8
wheat germ
8
cell-free protein
8
protein synthesis
8
method preparation
8
cell-free
5
protein
5

Similar Publications

Identification and characterization of a novel QTL for barley yellow mosaic disease resistance from bulbous barley.

Plant Genome

March 2025

Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.

Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.

View Article and Find Full Text PDF

Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.

View Article and Find Full Text PDF

Poor oral health is an independent risk factor for upper-aerodigestive tract cancers, including esophageal squamous cell carcinoma (ESCC); thus, good oral health may reduce the risk of ESCC. We previously reported that high expression of Toll-like receptor (TLR) 6, which recognizes peptidoglycan (PGN) from Gram-positive bacteria correlates with a good prognosis after esophagectomy for ESCC. Most beneficial bacteria in the mouth are Gram-positive.

View Article and Find Full Text PDF

MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.

Mol Breed

January 2025

Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.

Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.

View Article and Find Full Text PDF

Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!