The complete genome sequences of two novel small circular DNA viruses isolated from sweet-potato whiteflies collected in central-West (AdDF) and Southeast (AdO) regions of Brazil were determined by Next Generation Sequencing (NGS), and confirmed by cloning and Sanger sequencing. The genomes are 2,199 and 2,211 nt-long, respectively, encoding a putative coat protein (CP) and a replication-associated protein (Rep) and showing a genomic organization typical of viruses from the family Genomoviridae. Phylogenetic analysis with deduced amino acid sequences of Rep indicates that the virus from AdO is closely related to other members of the genus Gemycircularvirus, while the virus from AdDF is distantly related to other genomovirus. It was thus classified in a putative new genus, for which the name "Gemybolavirus" is proposed. These new genomoviruses are tentatively named "Bemisia associated gemybolavirus AdDF", and "Bemisia associated gemycircularvirus AdO".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-017-3425-y | DOI Listing |
Nat Commun
January 2025
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 20899, United States.
The Mass Spectrometry Data Center (MSDC) has recently started improving existing libraries and creating new ones for identifying and analyzing plastics-related compounds (PRC) and materials (PRM) as part of the NIST circular economy program. PRC are small molecules of dissimilar chemical nature; hence, to increase coverage, we have used three types of ionizations: EI, ESI, and APCI. PRM are solids that include polymers, polymer mixtures, and commercial plastics, so we have used pyrolysis-gas chromatography (py-GC-MS) to create a new searchable library.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFNat Commun
January 2025
Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
Metabolic reprogramming fuels cancer cell metastasis and remodels the immunosuppressive tumor microenvironment (TME). We report here that circPETH, a circular RNA (circRNA) transported via extracellular vesicles (EVs) from tumor-associated macrophages (TAMs) to hepatocellular carcinoma (HCC) cells, facilitates glycolysis and metastasis in recipient HCC cells. Mechanistically, circPETH-147aa, encoded by circPETH in an m6A-driven manner, promotes PKM2-catalyzed ALDOA-S36 phosphorylation via the MEG pocket.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Building 2, Moscow 125412, Russia.
This paper deals with the trapping of a particle diffusing in a cylindrical cavity by two circular absorbing spots of arbitrary radii located in the centers of the cavity bases. The focus is on the mean particle lifetime, which is its mean first-passage time to one of the spots. When the spots are small and their radii are well below the cavity radius, this time can be analyzed using the narrow escape (NE) theory, which describes it as a function of the spot radii and the only parameter of the cavity, its volume, independent of the cavity shape and the particle initial position.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!