A Giant Isolated Cardiac Hydatid Cyst in the Interventricular Septum.

Korean Circ J

Department of Cardiology, Umraniye Research and Training Hospital, Istanbul Health Sciences University, Istanbul, Turkey.

Published: May 2017

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449538PMC
http://dx.doi.org/10.4070/kcj.2016.0248DOI Listing

Publication Analysis

Top Keywords

giant isolated
4
isolated cardiac
4
cardiac hydatid
4
hydatid cyst
4
cyst interventricular
4
interventricular septum
4
giant
1
cardiac
1
hydatid
1
cyst
1

Similar Publications

Controlled Lipid Domain Positioning and Polarization in Confined Minimal Cell Models.

Angew Chem Int Ed Engl

December 2024

Ecole Normale Supérieure, Department of Chemistry, 24, rue Lhomond, 75005, Paris, FRANCE.

Giant unilamellar vesicles (GUVs) are widely used minimal cell models where essential biological features can be reproduced, isolated and studied. Although precise spatio-temporal distribution of membrane domains is a process of crucial importance in living cells, it is still highly challenging to generate anisotropic GUVs with domains at user-defined positions. Here we describe a novel and robust method to control the spatial position of lipid domains of liquid-ordered (Lo) / liquid-disordered (Ld) phase in giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

The development of efficient and stable proton conductors is a pivotal area of research due to their transformative potential in alternative energy technologies. Recently, there has been a surge of interest in synthesizing proton conductors based on polyoxometalate (POM) materials, attributed to their highly negatively charged and oxygen-rich surfaces. In this study, we report on a highly water-soluble giant POM, (NH)[MoO(CHCOO)(HO)]·300HO·10CHCOONH (designated as {Mo}), which was rendered insoluble in water by exchanging its ammonium cations with larger organic cations, specifically histidinium, pyridinium, bipyridinium, and methyl viologen, resulting in His-Mo132, Py-Mo132, Bpy-Mo132 and MV-Mo132, respectively.

View Article and Find Full Text PDF

Ecytonucleospora hepatopenaei (EHP), a microsporidian parasite first named and characterized from the Penaeus monodon (black or giant tiger shrimp), causes growth retardation and poses a significant threat to shrimp farming. We observed shrimp farms associated with disease conditions during our fish disease surveillance and health management program in West Bengal, India. Shrimp exhibited growth retardation and increased size variability, particularly in advanced stages, exhibiting soft shells, lethargy, reduced feeding and empty midguts.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies on stable monocoordinated organobismuthinidenes have revealed unique chemical and electronic structures.
  • Quantum chemical calculations indicated that Bu-MFluind-Bi(I) has a triplet ground state with a significant zero-field splitting (ZFS) greater than 4500 cm, which had not been verified experimentally before.
  • This research successfully measured a ZFS of 5422 cm using magneto-optical infrared spectroscopy, marking the highest ZFS recorded to date.
View Article and Find Full Text PDF

Proteomic analysis of giant panda testicular tissue of different age groups.

PeerJ

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, Sichuan, China.

Background: The reproductive ability of male giant pandas has been a major complicating factor in the conservation of the species. While it is well known that the testis produces sperm and secretes androgens, a process that requires precise regulation of various proteins, at present, there has been no systematic study on the composition of proteins in the testis of the giant pandas. Therefore, this study aims to apply proteomics to explore the regulation of proteins in the testes of giant pandas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!