Species contributions to ecosystem process and function can be population dependent and modified by biotic and abiotic setting.

Proc Biol Sci

Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK.

Published: May 2017

There is unequivocal evidence that altered biodiversity, through changes in the expression and distribution of functional traits, can have large impacts on ecosystem properties. However, trait-based summaries of how organisms affect ecosystem properties often assume that traits show constancy within and between populations and that species contributions to ecosystem functioning are not overly affected by the presence of other species or variations in abiotic conditions. Here, we evaluate the validity of these assumptions using an experiment in which three geographically distinct populations of intertidal sediment-dwelling invertebrates are reciprocally substituted. We find that the mediation of macronutrient generation by these species can vary between different populations and show that changes in biotic and/or abiotic conditions can further modify functionally important aspects of the behaviour of individuals within a population. Our results demonstrate the importance of knowing how, when, and why traits are expressed and suggest that these dimensions of species functionality are not sufficiently well-constrained to facilitate the accurate projection of the functional consequences of change. Information regarding the ecological role of key species and assumptions about the form of species-environment interactions needs urgent refinement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454255PMC
http://dx.doi.org/10.1098/rspb.2016.2805DOI Listing

Publication Analysis

Top Keywords

species contributions
8
contributions ecosystem
8
ecosystem properties
8
abiotic conditions
8
species
6
ecosystem
4
ecosystem process
4
process function
4
function population
4
population dependent
4

Similar Publications

Short tandem repeats delineate gene bodies across eukaryotes.

Nat Commun

December 2024

Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.

Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.

View Article and Find Full Text PDF

targeting of AmpC beta-lactamases in : unveiling Piperenol B as a potent antimicrobial lead.

J Biomol Struct Dyn

December 2024

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu, India.

Antimicrobial Resistance poses a major threat to human health worldwide. Microorganisms develop multi-drug resistance due to intrinsic factors, evolutionary chromosomal alterations, and horizontal gene transfer. , a common nosocomial bacterium, can cause various infections and is classified as multidrug-resistant.

View Article and Find Full Text PDF

Evolutionary change within community members and shifts in species composition via species sorting contribute to community and trait dynamics. However, we do not understand when and how both processes contribute to community dynamics. Here, we estimated the contributions of species sorting and evolution over time (60 days) in bacterial communities of 24 species under selection by a ciliate predator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!