The present paper describes the synthesis, biological evaluation and molecular simulation studies of a series of N-(4-hydroxyphenyl)-3,4,5-trimethoxybenzamide derivatives with N,N-dialkylaminoethoxy/propoxy moiety as potential memory enhancers with acetylcholinesterase-inhibiting activity having IC in low micromolar range (4.0-16.5 μM). All the compounds showed a good degree of agreement between in vivo and in vitro results as most of these derivatives showed dose-dependent increase in percent retention. Compound 10a showed significant % retention of 84.73 ± 4.51 as compared to piracetam (46.88 ± 5.42) at 3 mg kg and also exhibited a maximal percent inhibition of 97% at 50 μM. Molecular docking, MM-GBSA and molecular simulation studies were performed establishing a correlation between the experimental biology and in silico results. In silico results indicate that all the compounds have better docking scores and predicted binding free energies as compared to cocrystallized ligand with the best potent ligand retaining conserved hydrophobic interactions with residues of catalytic triad (HIS447), catalytic anionic site (CAS) (TRP86, TYR337, PHE338) and peripheral anionic site (PAS) (TYR72, TYR124, TRP286 and TYR341). Root mean square deviation (RMSD = 2.4 Å) and root mean square fluctuations of 10a-AChE complex during simulation proved its stable nature in binding toward acetylcholinesterase. The docked conformation of 10a and other analogs at the binding site have also been simulated with polar and nonpolar interactions interlining the gorge residues from PAS to catalytic triad.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2017.1336943DOI Listing

Publication Analysis

Top Keywords

molecular simulation
12
simulation studies
12
n-4-hydroxyphenyl-345-trimethoxybenzamide derivatives
8
potential memory
8
memory enhancers
8
synthesis biological
8
biological evaluation
8
evaluation molecular
8
catalytic triad
8
anionic site
8

Similar Publications

Context: To address the severe fuel crisis and environmental pollution, the use of lightweight metal materials, such as AZ alloy, represents an optimal solution. This study investigates the mechanical behavior and deformation mechanism of AZ alloys under uniaxial compressive using molecular dynamics (MD) simulations. The influence of various compositions, grain sizes (GSs), and temperatures on the compressive stress, the ultimate compressive strength (UCS), compressive yield stress (CYS), Young's modulus (E), shear strain, phase transformation, dislocation distribution, and total deformation length is thoroughly examined.

View Article and Find Full Text PDF

Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).

View Article and Find Full Text PDF

Water dynamics are investigated in binary osmolyte-water mixtures, exhibiting a microscopic heterogeneity driven by molecular aggregation, on the basis of molecular dynamics (MD) simulation studies. The protecting osmolyte TMAO molecules in solution are evenly dispersed without the formation of noticeable osmolyte aggregates, while the denaturant TMU molecules aggregate readily, generating microscopic heterogeneity in the spatial distribution of component molecules in TMU-water mixtures. A combined study of MD simulation with graph theoretical analysis and spatial inhomogeneity measurement with -values in the two osmolyte solutions revealed that the translational and rotational motions of water in the microheterogeneous environment of TMU-water mixtures are less hindered than those in the homogeneous media of TMAO-water mixtures.

View Article and Find Full Text PDF

Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.

View Article and Find Full Text PDF

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!