The severity of inbreeding depression appears to vary among taxa, but few ecological or other patterns have been identified that predict accurately which taxa are most sensitive to inbreeding. To examine the causes of heterogeneity in inbreeding depression, the effects of inbreeding on reproduction, survival, and growth were measured in three replicate experimental stocks for each of three subspecies of Peromyscus polionotus mice. Inbreeding of the dam reduced the probability of breeding, the probability of producing a second litter, and litter size. Inbreeding of the litter caused depression of litter size, juvenile viability, and mass at weaning, and caused an increase in the within-litter variance in mass. In spite of differences between the subspecies in natural population sizes, genetic variation, and mean rates of reproduction and survival, all variation observed between experimental populations in their responses to inbreeding could be attributed to random founder effects. The genetic load of deleterious alleles in each replicate was unequally partitioned among its founder pairs, and different founders contributed to the load affecting different fitness components. Thus, inbreeding depression for any one fitness component, in our experimental environment, must be due to relatively few deleterious alleles with major effects. Genetic loads so comprised would be expected to diverge among natural populations due to both random drift and selective removal of recessive deleterious alleles during population bottlenecks. The near universality of inbreeding depression would be maintained, however, if different alleles contribute to inbreeding depression of different fitness components and in different environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1558-5646.1996.tb03609.x | DOI Listing |
Front Genet
January 2025
Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
The buffalo population raised in Brazil tend to show loss of genetic variability over generations, with significant estimates of inbreeding depression. Besides mating genetically distant individuals, other tools can be used to maintain/increase the genetic variability of the population, such as the use of genotypes. The gene promotes the creation of crossing-over points across the genome, with each allele promoting the creation of a different hotspot.
View Article and Find Full Text PDFTranslocating individuals from multiple source populations is one way to bolster genetic variation and avoid inbreeding in newly established populations. However, mixing isolated populations, especially from islands, can potentially lead to outbreeding depression and/or assortative mating, which may limit interbreeding between source populations. Here, we investigated genetic consequences of mixing individuals from two island populations of the dibbler () in an island translocation.
View Article and Find Full Text PDFAnimal
December 2024
Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences Institution, 40, Guba S. str., H-7400 Kaposvár, Hungary.
Inbreeding depression (ID) is a well-documented phenomenon associated with reduced fitness and possible extinction. However, ID can be mitigated or even eliminated through the interplay of inbreeding and selection, a process known as purging. The aim of this study was to compare the predictive power of two commonly used approaches in models with and without random dam effects to detect purging (full and reduced models).
View Article and Find Full Text PDFCurr Biol
January 2025
University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada. Electronic address:
Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.
View Article and Find Full Text PDFRemnant populations of endangered species often have complex demographic histories associated with human impact. This can present challenges for conservation as populations modified by human activity may require bespoke management. The Eurasian red squirrel, (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!