To determine whether mildly deleterious mutations (MDMs) are present in nonrecombining genomes such as avian mitochondrial DNA (mtDNA), I analyzed molecular data from 14 studies using the neutrality tests of Tajima (1989a) and McDonald and Kreitman (1991). The presence of MDMs in mtDNA is inferred from trends observed across species in estimates of heterozygosity (θ and π) and by comparisons of polymorphism and divergence using the neutrality index (NI). Assuming neutrality, θ equals π and NI equals one. In this study, however, θ is greater than π more often than expected by chance, which reflects an excess of low-frequency alleles, and NI values presented here and elsewhere are consistently greater than one, which suggests an excess of nonsynonymous mutations within species (polymorphism) relative to between species (divergence). These observations suggest that, within species, there is an excess of rare haplotypes and that these haplotypes are carrying MDMs. The excess rare haplotypes may need to be accounted for when estimating population genetic parameters that assume strict neutrality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1558-5646.1999.tb05426.x | DOI Listing |
Mol Biol Evol
January 2025
Department of Ecology and Evolutionary Biology, University of California, Los Angeles.
Despite the importance of gut commensal microbiota to human health, there is little knowledge about their evolutionary histories, including their demographic histories and distributions of fitness effects (DFE) of mutations. Here, we infer the demographic histories and DFEs for amino-acid changing mutations of 39 of the most prevalent and abundant commensal gut microbial species found in Westernized individuals over timescales exceeding human generations. Some species display contractions in population size and others expansions, with several of these events coinciding with several key historical moments in human history.
View Article and Find Full Text PDFEpilepsia Open
January 2025
Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
Protein-activated kinases mediate spine morphogenesis and synaptic plasticity. PAK3 is part of the p21-activated kinases (PAKs) family of Ras-signaling serine/threonine kinases. Pathogenic variants in the X-linked gene PAK3 have been described in patients with neurodevelopmental syndromes.
View Article and Find Full Text PDFCureus
October 2024
Public Health Dentistry, Guru Nanak Institute of Dental Sciences and Research, Kolkata, IND.
Evolution
November 2024
Department of Biology, University of North Carolina, Chapel Hill, NC.
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles.
View Article and Find Full Text PDFMicrobes Environ
September 2024
Department of Applied Chemistry and Life Science, Toyohashi University of Technology.
The genomes of obligately host-restricted bacteria suffer from accumulating mildly deleterious mutations, resulting in marked size reductions. Psyllids (Hemiptera) are phloem sap-sucking insects with a specialized organ called the bacteriome, which typically harbors two vertically transmitted bacterial symbionts: the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria) and a secondary symbiont that is phylogenetically diverse among psyllid lineages. The genomes of several Carsonella lineages were revealed to be markedly reduced (158-174 kb), AT-rich (14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!