HOST SPECIFICITY AND THE GENETIC STRUCTURE OF TWO YUCCA MOTH SPECIES IN A YUCCA HYBRID ZONE.

Evolution

Department of Biology, Vanderbilt University, Box 1812-B, Nashville, Tennessee, 37235.

Published: October 1998

Host specialization is an important mechanism of diversification among phytophagous insects, especially when they are tightly associated with their hosts. The well-known obligate pollination mutualism between yucca moths and yuccas represent such an association, but the degree of host specificity and modes of specialization in moth evolution is unclear. Here we use molecular tools to test the morphology-based hypothesis that the moths pollinating two yuccas, Yucca baccata and Y. schidigera, are distinct species. Host specificity was assessed in a zone of sympatry where the hosts are known to hybridize. Because the moths are the only pollinators, the plant hybrids are evidence that the moths occasionally perform heterospecific pollination. Nucleotide variation was assessed in a portion of the mitochondrial gene COI, and in an intron within a nuclear lysozyme gene. Moths pollinating Y. baccata and Y. schidigera were inferred to be genetically isolated because there was no overlap in alleles at either locus, and all but one of the moths was found on their native host in the hybrid zone. Moreover, genetic structure was very weak across the range of each moth species: estimates of F for the lysozyme intron were 0.043 (SE = ± 0.004) and 0.021 (SE = ± 0.006) for the baccata and schidigera pollinators, respectively; estimated F for COI in the baccata moths was 0.228 (± 0.012), whereas schidigera pollinators were fixed for a single allele. These results reveal a high level of migration among widely separated moth populations. We predict that pollen-mediated gene flow among conspecific yuccas is considerable and hypothesize that geographic separation is a limited barrier both for yuccas and for yucca moths.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1558-5646.1998.tb02019.xDOI Listing

Publication Analysis

Top Keywords

host specificity
12
baccata schidigera
12
genetic structure
8
moth species
8
hybrid zone
8
moths
8
yucca moths
8
moths pollinating
8
yuccas yucca
8
schidigera pollinators
8

Similar Publications

Aprostocetus hagenowii (Ratzburg) is a generalist parasitoid of cockroach (Blattodea) oothecae. Previous studies examining the host range of A. hagenowii have largely focused on cockroaches of economic and medical importance, which represent a minority of species in an order filled with species of diverse morphology, behavior, and ecology.

View Article and Find Full Text PDF

Giardia duodenalis and Cryptosporidium spp. are significant zoonotic parasites that cause diarrhea and affect a diverse range of hosts. This study aimed to investigate the infection rates of these parasites in captive wildlife at Beijing Zoo.

View Article and Find Full Text PDF

Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard.

Zool Res

January 2025

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:

Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!