For coevolution to occur, there must be genetic variation in each species for traits relevant to their interaction. Here, statistically significant variation in susceptibility to a parasitic wasp was found among pea-aphid clones collected from a single population. In a subset of clones that was tested further, wasps were found to oviposit in aphids from both resistant and susceptible lines, but eggs failed to develop in resistant hosts. Significant genetic variance in susceptibility provides evidence that this aphid population has the potential to evolve resistance in response to selection by one of its major natural enemies. Predictions of an expected response to selection based on the experimental measures of variation and field parasitism rates suggested that there should be a detectable change in susceptibility over the course of a season. However, an experimental comparison of mean susceptibility of clones collected early and late in the summer, a period of several generations, revealed no response to selection by the wasps. Aphids collected late in the season were as susceptible, on the average, as those collected early in the summer. Possible constraints on the response of the aphids to selection by this natural enemy are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1558-5646.1995.tb02275.xDOI Listing

Publication Analysis

Top Keywords

response selection
12
genetic variation
8
aphid population
8
susceptibility parasitic
8
parasitic wasp
8
clones collected
8
collected early
8
susceptibility
5
potential coevolution
4
coevolution host-parasitoid
4

Similar Publications

Background: Distance education emerged as a potential solution to enhance access, standardize content, and facilitate updates. However, student perceptions varied widely. The COVID-19 pandemic prompted a rapid shift towards distance education in anatomy, presenting challenges and opportunities for medical students globally.

View Article and Find Full Text PDF

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining -values and aggregating test statistics.

View Article and Find Full Text PDF

Thanks to the identification of crucial molecular pathways, the therapeutic landscape for advanced differentiated thyroid tumors (DTCs) has significantly improved during the last ten years. The therapeutic scenario has been greatly impacted by the discovery of mutually exclusive gene changes in the MAPK and PI3K/AKT pathways, such as or fusions and pathogenic mutations of the and genes. Indeed, multi-kinase inhibitors and selective inhibitors have demonstrated outstanding efficacy for radioactive iodine-refractory (RAI-R) drug treatment, with overall response rates reaching up to 86%.

View Article and Find Full Text PDF

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!