The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520660 | PMC |
http://dx.doi.org/10.1016/j.celrep.2017.05.020 | DOI Listing |
Appl Environ Microbiol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India.
Background: Resmetirom, the first FDA-approved drug for nonalcoholic steatohepatitis (NASH) with fibrosis in obese patients, when combined with lifestyle modifications, improves NASH resolution and reduces fibrosis by at least one stage. Low thyroid hormone (T) levels are linked to a higher risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Epidemiological studies have confirmed the positive correlation between hypothyroidism and MASLD.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States.
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.
View Article and Find Full Text PDFAliment Pharmacol Ther
January 2025
Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France.
Background: Association between dietary factors and the risk of developing inflammatory bowel disease (IBD) has been studied extensively. However, identification of deleterious dietary patterns merits further study.
Aim: To investigate the risk of developing Crohn's disease (CD) and ulcerative colitis (UC) according to the inflammatory score of the diet (ISD) in the multinational European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.
World J Diabetes
January 2025
College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, Yunnan Province, China.
The onset and progression of type 2 diabetes mellitus (T2DM) are strongly associated with imbalances in gut bacteria, making the gut microbiome a new potential therapeutic focus. This commentary examines the recent publication in . The article explores the association between T2DM and gut microbiota, with a focus on the pathophysiological changes related to dysbiosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!