A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dimerization and Structural Stability of Amyloid Precursor Proteins Affected by the Membrane Microenvironments. | LitMetric

Dimerization and Structural Stability of Amyloid Precursor Proteins Affected by the Membrane Microenvironments.

J Chem Inf Model

Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

Published: June 2017

The lipid raft microenvironment is implicated in the generation of the pathological amyloid-β (Aβ) species in amyloid precursor protein (APP) that is associated with neurodegenerative diseases. Evidence shows that APP forms a transmembrane homodimer with changeable structures as a function of the membrane compositions. However, the molecular responsibility of the dimerization and structural alteration for the amyloidogenic process in segregated membranes remains largely unclear. Here, we performed multiple coarse grained (CG) simulations to explore the behavioral preference of the transmembrane domain of APP (called C99) that is affected by the lipid raft microenvironment. The results showed that C99 was anchored at the boundary of the lipid raft relying on the conserved hydrophobic motif of VxxAxxxVxxxV. Moreover, the dimerization of C99 was greatly destabilized by the lipid raft, which led to a susceptible switching packing conformation. The molecular driving forces were derived from the combined regulation of the saturated lipids and cholesterols rather than from the simple binding competition of cholesterol in the C99 dimerization. The molecular details of the differential dimerization in the raft-forming and bulk fluid bilayer environments were compared, and the structural information was helpful for further understanding the enzymolysis responsiveness of APP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.7b00196DOI Listing

Publication Analysis

Top Keywords

lipid raft
16
dimerization structural
8
amyloid precursor
8
raft microenvironment
8
dimerization
5
structural stability
4
stability amyloid
4
precursor proteins
4
proteins membrane
4
membrane microenvironments
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!