AI Article Synopsis

  • * Isothermal titration calorimetry (ITC) helped determine the binding affinities for Co(II) and Mn(II) in both wild-type and mutant forms of GpdQ, showing that phosphate enhances metal binding by increasing the binding entropy and the affinity of both metal sites.
  • * Mutations at the β site can improve metal binding, particularly through changes in hydrogen bonding, and the research indicates that a key hydroxide nucleophile is formed

Article Abstract

Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its β site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the β site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the β site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the β site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.6b01200DOI Listing

Publication Analysis

Top Keywords

metal ions
12
affinity site
12
metal affinity
12
site
11
metal
9
active site
8
glycerophosphodiesterase gpdq
8
gpdq enterobacter
8
enterobacter aerogenes
8
binding
6

Similar Publications

Predicting the location of coordinated metal ion-ligand binding sites using geometry-aware graph neural networks.

Comput Struct Biotechnol J

December 2024

Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.

More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.

View Article and Find Full Text PDF

Background: Metabolic-associated steatohepatitis and liver fibrosis (MASLD) is a growing public health concern, with environmental factors potentially playing a role in its development. This study aimed to investigate the associations between serum cadmium and mercury levels and the risk of MASLD in a nationally representative sample from the United States.

Methods: Data from the National Health and Nutrition Examination Survey from 1999 to 2018 were analyzed.

View Article and Find Full Text PDF

The structures of metalloproteins are essential for comprehending their functions and interactions. The breakthrough of AlphaFold has made it possible to predict protein structures with experimental accuracy. However, the type of metal ion that a metalloprotein binds and the binding structure are still not readily available, even with the predicted protein structure.

View Article and Find Full Text PDF

Polycalmagite Coating Enables Long-Term Alkaline Seawater Oxidation Over NiFe Layered Double Hydroxide.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.

Renewable energy-powered seawater electrolysis is a green and attractive technique for producing high-purity hydrogen. However, severe chlorideions (Cl) and their derivatives tend to corrode anodic catalysts at ampere-level current densities and hinder the application of seawater-to-H systems. Herein, a polycalmagite (PCM)-coated NiFe layered double hydroxide is presented on Ni foam (NiFe LDH@PCM/NF) that exhibits exceptional stability in alkaline seawater.

View Article and Find Full Text PDF

Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts.

Soft Matter

January 2025

School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.

Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!