Knockdown of host genes using high-throughput genome-wide RNA interference screens has identified numerous host factors that affect viral infections, which would be helpful in understanding host-virus interactions. We have developed a vhfRNAi web resource based on genome-wide RNAi experiments for viruses. It contains experimental details of 12 249 entries (host factors + restriction factors) for 18 viruses. Simultaneously, this resource encompasses analysis of overlapping genes, genome wide association studies, gene ontology (GO), pathogen interacting proteins, interaction networks and pathway enrichment. Using overlap analysis, it was found that Influenza A virus shared overlapping host genes with the majority of viruses including Hepatitis C virus and Dengue virus 2. In the genome wide association studies analysis, 429 diseases/traits were mapped, of which obesity-related traits were the most common. GO analysis revealed that the major categories belonged to metabolic processes, molecule transport, signal transduction, proteolysis, etc. In the pathogen interacting protein analysis, protein interaction data from different resources can be explored for further understanding of host-virus biology. By pathway enrichment analysis, a total of 8955 genes were mapped on 303 pathways with most of the hits coming from metabolic pathways. We have found 491 genes that are not essential for the host but essential for the virus and can be targeted to inhibit the virus. These may be explored as potential candidates for drug targets. The resource is freely accessible at and will be useful in understanding host-virus biology as well as identification of targets for the development of antiviral therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6mb00841k | DOI Listing |
Plant Cell Environ
January 2025
Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA.
Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a severe threat for human health and urgently needs new therapeutic approaches. Lytic bacteriophages (phages) are promising clinically viable therapeutic options against CRKP. We attempted to isolate lytic phages against CRKP of sequence type 11 and capsular type 64 (ST11-KL64), the predominant type in China.
View Article and Find Full Text PDFCommun Biol
January 2025
University of Chinese Academy of Sciences, 10049, Beijing, China.
Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.
View Article and Find Full Text PDFNat Commun
January 2025
Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!