Unlabelled: Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles.

Summary: Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific physiological and pathological effects of microparticles, and for development of advanced assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5657319PMC
http://dx.doi.org/10.1111/jth.13745DOI Listing

Publication Analysis

Top Keywords

intracellular origin
20
platelet-derived microparticles
20
microparticles
13
cell-activating stimulus
12
platelet microparticles
8
microparticles play
8
hemostasis thrombosis
8
origin microparticles
8
microparticles depend
8
depend cell-activating
8

Similar Publications

Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes.

Water Res

January 2025

Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:

Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.

View Article and Find Full Text PDF

Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron.

View Article and Find Full Text PDF

Exosome-Like Vesicles from Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation.

J Microbiol Biotechnol

November 2024

Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea.

(LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing.

View Article and Find Full Text PDF

Long-term dynamics of placozoan culture: emerging models for population and space biology.

Front Cell Dev Biol

January 2025

Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.

As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.

View Article and Find Full Text PDF

Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!