Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metallic nanoparticles (NPs) with tunable physical, optical and catalytic properties have a wide range of applications including various optoelectronics, sensors and fuel cells. In this paper, we demonstrate the evolution of various physical properties, configurations, size and density of palladium (Pd) nanostructures on sapphire(AlO) (0001) by the systematic control of deposition amount (DA) at distinct annealing temperatures. The transformation of the deposited thin films into various Pd NPs is achieved by the dewetting of the thin film by means of surface diffusion, nucleation, Volmer-Weber growth and surface energy minimization mechanism. Depending on the evolution of size, density and configuration, five distinctive regimes of Pd nanostructures are demonstrated: (i) nucleation and evolution of small NPs between 1 and 3 nm, (ii) medium NPs with the dominating vertical growth between 5 and 20 nm, (iii) laterally expanded large NPs between 30 and 40 nm, (iv) irregular coalesced Pd NPs between 50 and 80 nm and (v) voids evolution between 100 and 200 nm. Initial film thickness and annealing temperature play major roles on the dewetting process and the resulting Pd nanostructures are notably distinguished. The fabricated Pd nanostructures influence the lattice vibration modes of sapphire(0001) such as gradual decrement in the intensity and left-shift of the peak position with increased surface coverage. In addition, the optical properties are studied by UV-VIS-NIR (300-1100 nm) reflectance spectra, which shows the reflectance, absorption and scattering over the wavelength and are closely related to the morphology evolution of Pd nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp01410d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!