The relationship between color change and other physical and chemical characteristics of sliced cooked cured beef (SCCB) during chilled storage were investigated using principal components analysis (PCA) to determine the color fading causes. Samples were prepared and stored at 8°C for up to 35 days in a vacuum package to simulate a supermarket storage environment; related indicators were measured periodically every week. The results showed that the first PC explained 59.82% of the total variation, and the second explained 22.28%. PC1 was a concentrated reflection of color changes of SCCB during storage and PC2 was an environment factor causing the change of color. The change in apparent redness is mainly caused by redox reaction of the nitroso hemochromogen (NH) (eigenvectors of a*, C and NH in PC1 were all the maximum value of 0.28); a* was correlated with NH (0.96), free sulfhydryls (0.98), carbonyl derivatives (-0.95) formed during protein oxidation, and malondialdehyde (-0.98) and dienes (-0.92) formed by lipid oxidation. Color fading was significantly correlated with oxidizing and reducing power, existing forms of nitrogen and with the pH of the meat matrix. Changes in the internal environment of the sample initially influenced L* and b* values, and subsequently a*.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/asj.12813 | DOI Listing |
J Hazard Mater
January 2025
Institute of Environmental Science, Shanxi University, Wucheng No. 92, rd, Taiyuan, Shanxi, PR China. Electronic address:
Hydroquinone (HQ) is a prevalent pollutant in aquatic environments, posing significant risks to ecosystems and human health. Practical methods for the simultaneous detection and degradation of HQ are essential. To address this requirement, a dual-mode detection and degradation strategy has been developed utilizing designed nanozymes (DM) consisting of a porous SiO core and MnO shell.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:
Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.
View Article and Find Full Text PDFAnal Methods
January 2025
Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
J Environ Manage
January 2025
Center of Science and Technology for the Sustainability, Federal University of São Carlos, Sorocaba, Brazil. Electronic address:
Heliyon
November 2024
Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!