Cells' biomechanical responses to external stimuli have been intensively studied but rarely implemented into devices that interact with the human body. We demonstrate that the hygroscopic and biofluorescent behaviors of living cells can be engineered to design biohybrid wearables, which give multifunctional responsiveness to human sweat. By depositing genetically tractable microbes on a humidity-inert material to form a heterogeneous multilayered structure, we obtained biohybrid films that can reversibly change shape and biofluorescence intensity within a few seconds in response to environmental humidity gradients. Experimental characterization and mechanical modeling of the film were performed to guide the design of a wearable running suit and a fluorescent shoe prototype with bio-flaps that dynamically modulates ventilation in synergy with the body's need for cooling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438213 | PMC |
http://dx.doi.org/10.1126/sciadv.1601984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!