Hyperglycemia-mediated damage to retinal pigment epithelial (RPE) cells plays a central role in the pathogenesis of diabetic retinopathy. Dysregulation of microRNA (miR)-383 modulates pancreatic beta cell survival in diabetes; however, its role in diabetic retinopathy remains unclear. In this study, we examined the expression of miR-383 in ARPE-19 human RPE cell lines after high glucose treatment and investigated its functions in high glucose-induced reactive oxygen species (ROS) generation and apoptotic responses. The downstream target gene that mediated the action of miR-383 was functionally characterized. It was found that high glucose induced a 2.4-fold increase in miR-383 abundance, compared to ARPE-19 cells treated with normal glucose. Overexpression of miR-383 inhibited cell viability and promoted apoptosis and ROS formation in ARPE-19 cells, which was coupled with deregulation of Bcl-2 and Bax. Peroxiredoxin 3 (PRDX3) expression was repressed by miR-383 in ARPE-19 cells. Restoration of PRDX3 counteracted miR-383-induced ROS generation and apoptosis, while silencing of PRDX3 phenocopied the detrimental effects of miR-383 on ARPE-19 cells. Delivery of anti-miR-383 inhibitors led to an increase of PRDX3 expression and prevented high glucose-elicited ROS formation and apoptosis in ARPE-19 cells. Overall, miR-383 upregulation accounts for high glucose-induced oxidative stress and apoptosis in RPE cells by repressing PRDX3 expression. Targeting miR-383 may have therapeutic potential in the treatment of diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446519 | PMC |
Antioxidants (Basel)
January 2025
Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung 402, Taiwan.
Diabetic retinopathy is characterized by hyperglycemic retinal pigment epithelial cells that secrete excessive pro-inflammatory cytokines and VEGF, leading to retinal damage and vision loss. Cobalt protoporphyrin (CoPP) is a compound that can reduce inflammatory responses by inducing high levels of HO-1. In the present study, the therapeutic effects of CoPP were examined in ARPE-19 cells under hyperglycemia.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA.
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry.
View Article and Find Full Text PDFPhytomedicine
January 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:
Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.
View Article and Find Full Text PDFInt J Ophthalmol
January 2025
Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
Aim: To test the effect of autophagy on inflammatory damage resulting from oxidative stress in adult retinal pigment epithelial cell line (ARPE-19).
Methods: ARPE-19 cells were pretreated with 200 and 600 µmol/L hydrogen peroxide (HO) at various time intervals. The changes of cell morphology, cell viability, reactive oxygen species (ROS) level, autophagic activity, and the inflammatory cytokines (TNFα, IL-6, and TGFβ) were measured at baseline and after treatment with autophagy inducer rapamycin (Rapa) and suppressor wortmannin (Wort) or shATG5.
Int J Pharm
January 2025
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to be University, Mumbai, India. Electronic address:
The current research discusses polymer conjugation, formulation development, and evaluation of sorafenib-loaded polymeric nanomicelles of conjugated soluplus (solu-tin) and polymeric mixed nanomicelles of conjugated soluplus (solu-tin) with conjugated poloxamer 188 (polo-tin) for site-specific posterior segment delivery to the retina in managing retinoblastoma. Firstly, the soluplus and poloxamer 188 were conjugated with biotin by Fischer esterification reaction and evaluated by FTIR and H NMR for confirmation of covalent bond formation involving the carboxyl group of biotin and hydroxyl group of polymers. Secondly, the sorafenib-loaded solu-tin nanomicelles and mixed nanomicelles of solu-tin with polo-tin were formulated by the thin film hydration method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!