Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449397PMC
http://dx.doi.org/10.1038/s41598-017-02556-9DOI Listing

Publication Analysis

Top Keywords

sound vibration
8
arabidopsis thaliana
8
thaliana botrytis
8
botrytis cinerea
8
cinerea infection
8
resistance arabidopsis
8
infected arabidopsis
8
arabidopsis plants
8
plants pre-exposed
8
sv-treated plants
8

Similar Publications

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate KNaNbO (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V with outstanding characteristics: (1) a large vibration amplitude of 3.

View Article and Find Full Text PDF

Coupling the thermal acoustic modes of a bubble to an optomechanical sensor.

Microsyst Nanoeng

December 2024

ECE Department, University of Alberta, 9211-116 St. NW, Edmonton, T6G 1H9, AB, Canada.

Optomechanical sensors provide a platform for probing acoustic/vibrational properties at the micro-scale. Here, we used cavity optomechanical sensors to interrogate the acoustic environment of adjacent air bubbles in water. We report experimental observations of the volume acoustic modes of these bubbles, including both the fundamental Minnaert breathing mode and a family of higher-order modes extending into the megahertz frequency range.

View Article and Find Full Text PDF

Deaf futurity: designing and innovating hearing aids.

Med Humanit

December 2024

History, University of Delaware, Newark, Delaware, USA

One of the tenets of a posthuman vision is the eradication of disability through technology. Within this site of 'no future', as Alison Kafer describes, the disabled body is merged with artificial intelligence technology or transformed into a prosthetic superhuman. These imaginative possibilities are materialised in a future-oriented mindset in contemporary technological innovation, including hearing aids and other devices-such as vibrating vests to 'feel sounds' or sign language gloves, what design critic Liz Jackson defines as 'disability dongles'-designed to bypass deafness that simultaneously provide a 'cure' and create a 'post-deaf reality'.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

Auditory brainstem responses as a biomarker for cognition.

Commun Biol

December 2024

Center for Hearing Research, Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, CA, USA.

A non-invasive, accessible and effective biomarker is critical to the diagnosis, monitoring and treatment of age-related cognitive decline. Recent work has suggested a strong association between auditory brainstem responses (ABR) and cognitive function in aging macaques. Here we show in 118 human participants (66 females; age range=18-92 years; hearing loss = -5 to 70 dB HL) that cognition is associated with both age and hearing level, but this triad relationship is mainly driven by the age factor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!