In silico analyses of deleterious missense SNPs of human apolipoprotein E3.

Sci Rep

Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.

Published: May 2017

ApoE3 is the major chylomicron apolipoprotein, binding in a specific liver peripheral cell receptor, allowing transport and normal catabolism of triglyceride-rich lipoprotein constituents. Point mutations in ApoE3 have been associated with Alzheimer's disease, type III hyperlipoproteinemia, atherosclerosis, telomere shortening and impaired cognitive function. Here, we evaluate the impact of missense SNPs in APOE retrieved from dbSNP through 16 computational prediction tools, and further evaluate the structural impact of convergent deleterious changes using 100 ns molecular dynamics simulations. We have found structural changes in four analyzed variants (Pro102Arg, Arg132Ser, Arg176Cys and Trp294Cys), two of them (Pro102Arg and Arg176Cys) being previously associated with human diseases. In all cases, except for Trp294Cys, there was a loss in the number of hydrogen bonds between CT and NT domains that could result in their detachment. In conclusion, data presented here could increase the knowledge of ApoE3 activity and be a starting point for the study of the impact of variations on APOE gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449402PMC
http://dx.doi.org/10.1038/s41598-017-01737-wDOI Listing

Publication Analysis

Top Keywords

missense snps
8
silico analyses
4
analyses deleterious
4
deleterious missense
4
snps human
4
human apolipoprotein
4
apolipoprotein apoe3
4
apoe3 major
4
major chylomicron
4
chylomicron apolipoprotein
4

Similar Publications

Dopamine receptor D4 (DRD4) plays a vital role in regulating various physiological functions, including attention, impulse control, and sleep, as well as being associated with various neurological diseases, including attention deficit hyperactivity disorder, novelty seeking, and so on. However, a comprehensive analysis of harmful nonsynonymous single nucleotide polymorphisms (nsSNPs) of the DRD4 gene and their effects remains unexplored. The aim of this study is to uncover novel damaging missense nsSNPs and their structural and functional effects on the DRD4 receptor.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Background: Prolonged natural selection and artificial breeding have contributed to increased uniformity within the Tibetan sheep population, resulting in a reduction in genetic diversity and the establishment of selective signatures in the genome. This process has led to a loss of heterozygosity in specific genomic regions and the formation of Runs of Homozygosity (ROH). Current research on ROH predominantly focuses on inbreeding and the signals of selection; however, there is a paucity of investigation into the genetic load and selective pressures associated with ROH, both within these regions and beyond.

View Article and Find Full Text PDF

CRP is a biomarker of acute inflammation linked to metabolic complications. Given the rising prevalence of these conditions in India, we investigated the genetic basis of CRP levels in Indian adolescents, an underrepresented group in genetic studies, to identify early markers of metabolic risk. We performed a two-phased genome-wide association study (GWAS; N = 5052) and an independent Exome-wide association study (ExWAS; N = 4547), to identify both common and rare genetic variants associated with CRP levels.

View Article and Find Full Text PDF

Genetic variations underlying aminoglycoside resistance in antibiotic-induced Mycobacterium intracellulare mutants.

Infect Genet Evol

January 2025

Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea; Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea. Electronic address:

Mycobacterium avium complex (MAC) is an emerging pathogen leading to public health concerns in developing and developed countries, particularly among immunocompromised individuals and patients with structural lung diseases. Current clinical guidelines recommend combination antibiotic therapy for treating MAC pulmonary disease (MAC-PD). However, the rising prevalence of antibiotic resistance poses significant challenges, including treatment failure and clinical recurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!