Transforming Growth Factor-β Receptor III is a Potential Regulator of Ischemia-Induced Cardiomyocyte Apoptosis.

J Am Heart Assoc

Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China

Published: May 2017

Background: Myocardial infarction (MI) is often accompanied by cardiomyocyte apoptosis, which decreases heart function and leads to an increased risk of heart failure. The aim of this study was to examine the effects of transforming growth factor-β receptor III (TGFβR3) on cardiomyocyte apoptosis during MI.

Methods And Results: An MI mouse model was established by left anterior descending coronary artery ligation. Cell viability, apoptosis, TGFβR3, and mitogen-activated protein kinase signaling were assessed by methylthiazolyldiphenyl-tetrazolium bromide assay, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunofluorescence, electron microscopy, and Western blotting. Our results demonstrated that TGFβR3 expression in the border region of the heart was dynamically changed during MI. After stimulation with HO, TGFβR3 overexpression in cardiomyocytes led to increased cell apoptosis and activation of p38 signaling, whereas TGFβR3 knockdown had the opposite effect. ERK1/2 and JNK1/2 signaling was not altered by TGFβR3 modulation, and p38 inhibitor (SB203580) reduced the effect of TGFβR3 on apoptosis, suggesting that p38 has a nonredundant function in activating apoptosis. Consistent with the in vitro observations, cardiac TGFβR3 transgenic mice showed augmented cardiomyocyte apoptosis, enlarged infarct size, increased injury, and enhanced p38 signaling upon MI. Conversely, cardiac loss of function of TGFβR3 by adeno-associated viral vector serotype 9-TGFβR3 short hairpin RNA attenuated the effects of MI in mice.

Conclusions: TGFβR3 promotes apoptosis of cardiomyocytes via a p38 pathway-associated mechanism, and loss of TGFβR3 reduces MI injury, which suggests that TGFβR3 may serve as a novel therapeutic target for MI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669164PMC
http://dx.doi.org/10.1161/JAHA.116.005357DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte apoptosis
16
tgfβr3
12
apoptosis
9
transforming growth
8
growth factor-β
8
factor-β receptor
8
receptor iii
8
p38 signaling
8
p38
5
iii potential
4

Similar Publications

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF

Targeted Mitochondrial Function for Cardiac Fibrosis: an Epigenetic Perspective.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, P.R. China 230601. Electronic address:

Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.

View Article and Find Full Text PDF

Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review).

Int J Mol Med

March 2025

Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca and CVD has been extensively studied. Ca movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis.

View Article and Find Full Text PDF

The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF

Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways.

Cardiovasc Drugs Ther

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.

Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.

Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!