Background: The noble crayfish (Astacus astacus) displays a complex historical and contemporary genetic status in Europe. The species divergence has been shaped by geological events (i.e. Pleistocene glaciations) and humanly induced impacts (i.e. translocations, pollution, etc.) on its populations due to species commercial value and its niche degradation. Until now, limited genetic information has been procured for the Balkan area and especially for the southernmost distribution of this species (i.e. Greece). It is well known that the rich habitat diversity of the Balkan Peninsula offers suitable conditions for genetically diversified populations. Thus, the present manuscript revisits the phylogenetic relationships of the noble crayfish in Europe and identifies the genetic make-up and the biogeographical patterns of the species in its southern range limit.
Results: Mitochondrial markers (i.e. COI and 16S) were used in order to elucidate the genetic structure and diversity of the noble crayfish in Europe. Two of the six European haplotypic lineages, were found exclusively in Greece. These two lineages exhibited greater haplotypic richness when compared with the rest four (of "Central European" origin) while they showed high genetic diversity. Divergence time analysis identified that the majority of this divergence was captured through Pleistocene, suggesting a southern glacial refugium (Greece, southern Balkans). Furthermore, six microsatellite markers were used in order to define the factors affecting the genetic structure and demographic history of the species in Greece. The population structure analysis revealed six to nine genetic clusters and eight putative genetic barriers. Evidence of bottleneck effects in the last ~5000 years (due to climatic and geological events and human activities) is also afforded. Findings from several other research fields (e.g. life sciences, geology or even archaeology) have been utilized to perceive the genetic make-up of the noble crayfish.
Conclusions: The southernmost part of Balkans has played a major role as a glacial refugium for A. astacus. Such refugia have served as centres of expansion to northern regions. Recent history of the noble crayfish in southern Balkans reveals the influence of environmental (climate, geology and/or topology) and anthropogenic factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450353 | PMC |
http://dx.doi.org/10.1186/s12862-017-0971-6 | DOI Listing |
Fish Shellfish Immunol
October 2023
LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany.
Gene
December 2024
Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany.
Transcription factors (TFs) have an important role in the regulation of the gene expression network. The role of TFs in the immune response of freshwater crayfish is poorly understood, but leveraging the regulatory mechanisms of immune response could augment the resistance against the invasive oomycete pathogen, Aphanomyces astaci. Previous studies indicated that the TFs CCAAT/enhancer-binding protein (C/EBP) and putative Krüppel homolog-1 protein (Kr-h1) might play a role in immune and stress response of the noble crayfish (Astacus astacus).
View Article and Find Full Text PDFJ Invertebr Pathol
March 2024
Rhineland-Palatinate Technical University Kaiserslautern Landau, Institute for Environmental Sciences, Department of Molecular Ecology, Fortstr. 7, 76829 Landau, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany. Electronic address:
Pathogen spores have been recognized as prey with implications for resource dynamics, energy transfer and disease transmission. In aquatic ecosystems, filter-feeders are able to consume such motile forms of pathogens that can cause severe disease in susceptible hosts. The interactions between European crayfish and the crayfish plague pathogen Aphanomyces astaci are of particular conservation interest.
View Article and Find Full Text PDFEnviron Res
February 2024
Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433, Ås, Norway. Electronic address:
Lake Steinsfjorden, an important noble crayfish (Astacus astacus) habitat, is often affected by blooms of Planktothrix spp. that produce microcystins (MCs). A poor correlation between MCs by ELISA in the water and in crayfish tissue in a study in 2015 prompted further investigation by LC-HRMS.
View Article and Find Full Text PDFJ Invertebr Pathol
November 2023
Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
European native crayfish populations are undergoing a strong decline due to environmental factors and the introduction of highly competitive non-native species. Pathogens are an additional threat to native crayfish. However, aside from the crayfish plague, other infectious diseases are still widely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!