It is essential to understand the interactions of engineered nanoparticles (ENPs) with additives used in agriculture and their impacts on crop plants. In this study, kidney bean (Phaseolus vulgaris) plants were grown in potting soil amended with either nano copper (nCu), bulk copper (bCu), or copper chloride (CuCl) at 0, 50, and 100mg/kg, combined with 0, 10, or 100μM of kinetin (KN). Plant growth, Cu, micro and macroelement concentrations, chlorophyll content, and enzymatic activity were examined in 55-day old plants. Results showed that root Cu content was at least 10-fold higher, compared to other tissues. Accumulation of Cu in roots was decreased by 100μM KN up to 25%. A concentration-dependent increase of Cu content in leaves by Cu×KN was observed. Chlorophyll production was diminished by CuCl+KN between 22 and 30%, showing a hormetic response. Catalase activity was repressed by 65% to 82% in bCu and CuCl treatments. From all essential elements, Ca, Mn, and P were reduced by 33% to 97% in bCu, CuCl, and CuCl+KN treatments. However, this did not impact stem elongation and tissue biomass that increased up to 55% under exposure to bCu and CuCl. Our results demonstrate that KN combined with ionic Cu could have negative implications in kidney bean plants, since this combination impacted chlorophyll production and nutrient element accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.05.095 | DOI Listing |
BMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
In recent years, black beans (Phaseolus vulgaris L.) have gained popularity in the U.S.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA.
The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.
The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Common bean (Phaseolus vulgaris L.) is a crop rich in protein, minerals, and starch. Viruses are a significant limiting factor in increasing the production of legumes, particularly common beans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!