Fibrin is a plasma protein with a central role in blood clotting and wound repair. Upon vascular injury, fibrin forms resilient fibrillar networks (clots) via a multistep self-assembly process, from monomers, to double-stranded protofibrils, to a branched network of thick fibers. In vitro, fibrin self-assembly is sensitive to physicochemical conditions like the solution pH and ionic strength, which tune the strength of the noncovalent driving forces. Here we report a surprising finding that the buffer-which is necessary to control the pH and is typically considered to be inert-also significantly influences fibrin self-assembly. We show by confocal microscopy and quantitative light scattering that various common buffering agents have no effect on the initial assembly of fibrin monomers into protofibrils but strongly hamper the subsequent lateral association of protofibrils into thicker fibers. We further find that the structural changes are independent of the molecular structure of the buffering agents as well as of the activation mechanism and even occur in fibrin networks formed from platelet-poor plasma. This buffer-mediated decrease in protofibril bundling results in a marked reduction in the permeability of fibrin networks but only weakly influences the elastic modulus of fibrin networks, providing a useful tuning parameter to independently control the elastic properties and the permeability of fibrin networks. Our work raises the possibility that fibrin assembly in vivo may be regulated by variations in the acute-phase levels of bicarbonate and phosphate, which act as physiological buffering agents of blood pH. Moreover, our findings add a new example of buffer-induced effects on biomolecular self-assembly to recent findings for a range of proteins and lipids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489959 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.7b00527 | DOI Listing |
Gels
December 2024
Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
Angiogenesis, the formation of new blood vessels, is a fundamental process in both physiological repair mechanisms and pathological conditions, including cancer and chronic inflammation. Hydrogels are commonly used as in vitro models to mimic the extracellular matrix (ECM) and support endothelial cell behavior during angiogenesis. Mesenchymal stem cells further augment cell and tissue growth and are therefore widely used in regenerative medicine.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA. Electronic address:
Osteosarcoma (OS), the most common form of primary bone cancer in young adults, has had no improvements in clinical outcomes in 50 years. This highlights a critical need to advance mechanistic understanding of OS to further therapeutic discovery, which will only be possible with accurate models of the disease. Compared to traditional monolayer studies and preclinical models, in vitro models that better replicate the three-dimensional (3D) bone marrow microenvironment will facilitate methodical investigations of the events and factors that drive OS progression.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, Oklahoma, United States of America.
Fibrinolysis, the plasmin-mediated degradation of the fibrin mesh that stabilizes blood clots, is an important physiological process, and understanding mechanisms underlying lysis is critical for improved stroke treatment. Experimentalists are now able to study lysis on the scale of single fibrin fibers, but mathematical models of lysis continue to focus mostly on fibrin network degradation. Experiments have shown that while some degradation occurs along the length of a fiber, ultimately the fiber is cleaved at a single location.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.
Vascular interactions play a crucial role in embryogenesis, including skeletal development. During endochondral ossification, vascular networks are formed as mesenchymal cells condense and later invade skeletal elements to form the bone marrow. We and other groups developed a model of endochondral ossification by implanting human embryonic stem cell (hESC)-derived sclerotome into immunodeficient mice.
View Article and Find Full Text PDFThromb Haemost
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Background: Neutrophil Extracellular Traps can contribute to thrombosis via stabilization fibrin network, which is normally conducted by plasma transglutaminase, Factor XIII-A as part of coagulation cascade. The possible presence and activity of FXIII-A in neutrophils or during NETosis is unknown. Here, we investigated potential presence of FXIII-A in neutrophils and participation in NET-fibrinogen interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!