Introduction: Telemedicine care models for managing advanced chronic obstructive pulmonary disease (COPD) may benefit from the addition of motion sensing, spirometry, and tablet-based symptom diary tracking.

Methods: We conducted a feasibility study of telemedicine in the home setting using multiple activity sensor monitoring equipment. Deployment and monitoring were supported by home health nurses with technical advice from the equipment makers as needed. Data analytics for motion sensing was provided by the research sponsor, but was not used for care decisions. On study intake, a health risk assessment, Quality of Life (SF-36) survey, and the St. George Respiratory Questionnaire were administered to assess patients' self-perception of quality of life, activities of daily life function, and difficulty living with COPD.

Results: Twenty-eight patients were enrolled and data were gathered for a minimum of 6 months and maximum of 9 months. The researchers demonstrated that augmentation of traditional telemedicine methods with motion sensing, spirometry, and symptom diaries appears feasible. The technical, process, logistics barriers, and solutions required for system deployment are described. The researchers demonstrated that augmentation of traditional telemedicine methods with motion sensing, spirometry, and symptom diaries appears feasible.

Conclusions: Further exploration will be needed to determine the value of this information in preventing outcomes relevant to patients.

Download full-text PDF

Source
http://dx.doi.org/10.1089/tmj.2016.0201DOI Listing

Publication Analysis

Top Keywords

motion sensing
16
sensing spirometry
12
activity sensor
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
quality life
8
researchers demonstrated
8
demonstrated augmentation
8
augmentation traditional
8

Similar Publications

Potential-resolved electrochemiluminescent immunoassay based on dual co-reactants regulation.

Biosens Bioelectron

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:

Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.

View Article and Find Full Text PDF

Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.

View Article and Find Full Text PDF

-related disorder (SRD) is a developmental and epileptic encephalopathy caused by a disruption of the gene. At the beginning of 2024, it is one of many rare monogenic brain disorders without disease-modifying treatments, but that is changing. This article chronicles the last 5 years, beginning when treatments for SRD were not publicly in development, to the start of 2024 when many SRD-specific treatments are advancing.

View Article and Find Full Text PDF

Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Article Synopsis
  • Flexible hydrogel sensors have limitations in sensitivity and freezing in low temperatures, hindering their applications.
  • A new multifunctional eutectogel is developed through photopolymerization, offering properties like high transparency, anti-freezing, and self-healing.
  • This eutectogel shows exceptional performance with a high gauge factor for strain sensitivity, making it promising for flexible electronics in cold conditions.
View Article and Find Full Text PDF

Sensitive and accurate detection and imaging of different microRNAs (miRNAs) in cancer cells hold great promise for early disease diagnosis. Herein, a DNA tetrahedral scaffold (DTS)-corbelled autonomous-motion (AM) molecular machine based fluorescent sensing platform was designed for simultaneous detection of two types of miRNAs (miRNA-21 and miRNA-155) in HeLa cells. Locking-strand-silenced DNAzymes (P:L duplex) were firstly grafted at the loop of target-analogue-embedded double-stem hairpin substrates (TDHS) of DTS, making the sensor in a "signal off" state due to the closely distance between modified fluorophores (FAM and Cy5) with the corresponding quenchers (BHQ1 and BHQ2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!