Poly(l-lactide) (PLLA)-based nanoparticles have attracted much attention with respect to applications in drug delivery and nanomedicine as a result of their biocompatibility and biodegradability. Nevertheless, the ability to prepare PLLA assemblies with well-defined shape and dimensions is limited and represents a key challenge. Herein we report access to a series of monodisperse complex and hierarchical colloidally stable 2D structures based on PLLA cores using the seeded growth, "living-crystallization-driven self-assembly" method. Specifically, we describe the formation of diamond-shaped platelet micelles and concentric "patchy" block co-micelles by using seeds of the charge-terminated homopolymer PLLA[PPhMe]I to initiate the sequential growth of either additional PLLA[PPhMe]I or a crystallizable blend of the latter with the block copolymer PLLA-b-P2VP, respectively. The epitaxial nature of the growth processes used for the creation of the 2D block co-micelles was confirmed by selected area electron diffraction analysis. Cross-linking of the P2VP corona of the peripheral block in the 2D block co-micelles using Pt nanoparticles followed by dissolution of the interior region in good solvent for PLLA led to the formation of novel, hollow diamond-shaped assemblies. We also demonstrate that, in contrast to the aforementioned results, seeded growth of the unsymmetrical PLLA BCPs PLLA-b-P2VP or PLLA-b-PAGE alone from 2D platelets leads to the formation of diamond-fiber hybrid structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b03172DOI Listing

Publication Analysis

Top Keywords

block co-micelles
12
complex hierarchical
8
seeded growth
8
block
5
hierarchical assemblies
4
assemblies crystallization-driven
4
crystallization-driven self-assembly
4
self-assembly polyl-lactide
4
polyl-lactide homopolymers
4
homopolymers charged
4

Similar Publications

Nanoplatform for synergistic therapy constructed via the co-assembly of a reduction-responsive cholesterol-based block copolymer and a photothermal amphiphile.

Mater Today Bio

December 2024

Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China.

The goal of combination cancer therapy, including chemo-phototherapy, is to achieve highly efficient antitumor effects while minimizing the adverse reactions associated with conventional chemotherapy. Nevertheless, enhancing the contribution of non-chemotherapeutic strategies in combination therapy is often challenging because this requires multiple active ingredients to be encapsulated in a single delivery system. However, most commonly used photothermal reagents are challenging to be loaded in large quantities and have poor biocompatibility.

View Article and Find Full Text PDF

Synergetic Self-Assembly of Liquid Crystalline Block Copolymer with Amphiphiles for Fabrication of Hierarchical Assemblies.

Small

January 2024

Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China.

Novel functions and advanced structure, where each single component could not be produced individually, can exhibit from the collective and synergistic behavior of component systems. This synergetic strategy has been successfully demonstrated for co-assembly of polymer-polymer to construct hierarchical nanomaterials. However, differences in the natures of polymer and small molecules impose challenges in the construction of sophisticated co-assemblies with geometrical and compositional control.

View Article and Find Full Text PDF

Introduction: miRNA-21 (miR-21) is highly expressed in glioblastoma, facilitating tumor growth by blocking the expression of apoptosis-related genes. Therefore, an antisense microRNA oligonucleotide (AMO) against miR-21 was suggested as a therapeutic nucleic acid for glioblastoma.

Objectives: AMO21 co-micelles were developed with tumor-targeting T7 peptides as an AMO21 delivery system by intranasal administration.

View Article and Find Full Text PDF

Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One-Handed Helical Supramolecular Polymers.

Angew Chem Int Ed Engl

August 2022

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, China.

Programming the organization of semiconducting polymers to form well-defined nanoarchitectures is desirable for fabricating functional materials. In this work, semiconducting copolymers, poly(cholesterol allene)-b-poly(3-hexylthiophene) (PCA-b-P3HT) containing helical PCA and poly(alkoxy allene)-b-poly(3-hexylthiophene) (PAA-b-P3HT) containing achiral PAA segments, were prepared. Crystallization of P3HT and helicity of PCA drove PCA-b-P3HT self-assemble into spherical nanoparticles that gradually transformed into one-handed helical nanofibers.

View Article and Find Full Text PDF

Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable block has emerged to be a powerful and highly relevant method for the production of one- and two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This gives access to a multitude of potential applications, from hierarchical self-assembly to complex superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization. Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized, alternating corona segmentation, are highly interesting, as this feature provides striking advantages concerning interfacial activity, functionalization, and confinement effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!