The impact of geometrical confinement on the thermodynamic as well as kinetic aspects of a model cycloaddition reaction between 1,3-butadiene and ethylene have been investigated based on density functional theory calculations. To this end, organic hosts ExBox and cucurbit[7]uril (CB[7]) were used to impose confinement effects on the reactants, transition state (TS), and product involved in the reaction. The results suggest that the shape of the host and thereby the nature of the confining regime dictates the thermodynamic outcome of the reaction. The reaction becomes thermodynamically more spontaneous inside CB[7] as compared with that in either ExBox or in the "unconfined" gaseous state. Furthermore, the rate constant associated with the reaction increases manifold inside CB[7]. Atoms-in a-molecule, noncovalent interaction, natural bond orbital, as well as energy decomposition analyses suggest that the close geometrical proximity of the reactants inside CB[7] as well as extra stabilization of the TS in the encapsulated state may dictate the outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201700308 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.
Despite the development of various controlled release systems for antitumor therapies, off-target side effects remain a persistent challenge. In situ therapeutic synthesis from biocompatible substances offers a safer and more precise alternative. This study presents a hypoxia-initiated supramolecular free radical system capable of inducing intracellular polymerization, thereby disrupting the cytoskeleton and organelles within 4T1 cells.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
Nat Commun
December 2024
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
ACS Earth Space Chem
November 2024
Department of Earth Sciences, Utrecht University, Utrecht 3584 CB, The Netherlands.
Proteins
November 2024
Department of Chemistry, University of Southern California, Los Angeles, California, USA.
G-protein-coupled receptors (GPCRs) constitute one of the most prominent families of integral membrane receptor proteins that mediate most transmembrane signaling processes. Malfunction of these signal transduction processes is one of the underlying causes of many human pathologies (Parkinson's, Huntington's, heart diseases, etc), provoking that GPCRs are the largest family of druggable proteins. However, these receptors have been targeted traditionally by orthosteric ligands, which usually causes side effects due to the simultaneous targeting of homologous receptor subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!