Model-based bootstrapping when correcting for measurement error with application to logistic regression.

Biometrics

Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Norway.

Published: March 2018

When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.12730DOI Listing

Publication Analysis

Top Keywords

measurement error
20
model-based bootstrapping
12
logistic regression
12
bootstrapping correcting
8
correcting measurement
8
regression models
8
models measurement
8
corrected estimators
8
received limited
8
limited attention
8

Similar Publications

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

Background: This study evaluates retinal oxygen saturation and vessel density within the macula and correlates these measures in controls and subjects with type 2 diabetes (DM) with (DMR) and without (DMnR) retinopathy. Changes in retinal oxygen saturation have not been evaluated regionally in diabetic patients.

Methods: Data from seventy subjects (28 controls, 26 DMnR, and 16 DMR were analyzed.

View Article and Find Full Text PDF

It is popular to study individual differences in cognition with experimental tasks, and the main goal of such approaches is to analyze the pattern of correlations across a battery of tasks and measures. One difficulty is that experimental tasks are often low in reliability as effects are small relative to trial-by-trial variability. Consequently, it remains difficult to accurately estimate correlations.

View Article and Find Full Text PDF

Highly sensitive split ring resonator-based sensor for quality monitoring of edible oils.

Sci Rep

January 2025

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.

This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly.

View Article and Find Full Text PDF

In clinical movement biomechanics, kinematic measurements are collected to characterise the motion of articulating joints and investigate how different factors influence movement patterns. Representative time-series signals are calculated to encapsulate (complex and multidimensional) kinematic datasets succinctly. Exacerbated by numerous difficulties to consistently define joint coordinate frames, the influence of local frame orientation and position on the characteristics of the resultant kinematic signals has been previously proven to be a major limitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!