Polarity is known to affect the growth and properties of ZnO single crystals and epitaxial films, but its effects are mostly unknown in ZnO nanorods. To leave polarity as the only varying parameter, ZnO nanorods are grown by chemical bath deposition under identical conditions and during the same run on O- and Zn-polar ZnO single crystals patterned by electron beam lithography with the same pattern consisting of 15 different domains. The resulting well-ordered O- and Zn-polar ZnO nanorod arrays with high structural uniformity are formed on all the domains. The comparison of their typical dimensions unambiguously reveals that Zn-polar ZnO nanorods have much higher growth rates than O-polar ZnO nanorods for all the hole diameter and period combinations. The distinct growth rates are explained in the framework of the surface reaction-/diffusive transport-limited elongation regime analysis, which yields a much larger surface reaction rate constant for Zn-polar ZnO nanorods. The origin of the difference is attributed to polarity-dependent dangling bond configurations at the top polar c-faces of ZnO nanorods, which may further be affected by polarity-dependent interactions with the ionic species in aqueous solution. These findings show the relevance of considering polarity as an important quantity in ZnO nanorods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b00935DOI Listing

Publication Analysis

Top Keywords

zno nanorods
32
zn-polar zno
16
growth rates
12
zno
11
nanorods
8
chemical bath
8
bath deposition
8
zno single
8
single crystals
8
polarity-dependent growth
4

Similar Publications

Development of Ni-ZnO-ACE-2 peptide hybrids as electrochemical devices for SARS-CoV-2 spike protein detection.

Bioelectrochemistry

January 2025

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil. Electronic address:

Owing to fast SARS-CoV-2 mutations, biosensors employing antibodies as biorecognition elements have presented problems with sensitivity and accuracy. To face these challenges, antibodies can be replaced with the human angiotensin converting enzyme 2 (ACE-2), where it has been shown that the affinity between ACE-2 and the receptor binding domain (RBD) increases with the emergence of new variants. Herein, we report on Ni-doped ZnO nanorod electrochemical biosensors employing an ACE-2 peptide (IEEQAKTFLDKFNHEAEDLFYQS-NH) as a biorecognition element for detecting Spike (S) Wild-Type (WT) protein.

View Article and Find Full Text PDF
Article Synopsis
  • New optoelectronic devices are emerging from the use of memristors that can be modulated with light, benefiting fields like computer vision and artificial intelligence.
  • The study features memristors made from a hybrid material of zinc oxide nanorods and PMMA, which do not need a forming step and show effective electronic switching.
  • These devices can switch with UV light and demonstrate notable memory capabilities, enabling applications in neural networks and neuromorphic computing due to their unique photonic synaptic functions.
View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .

View Article and Find Full Text PDF

Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!