Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article presents the findings from a numerical simulation study that was conducted to evaluate the performance of alternative statistical analysis methods for background screening assessments when data sets are generated with incremental sampling methods (ISMs). A wide range of background and site conditions are represented in order to test different ISM sampling designs. Both hypothesis tests and upper tolerance limit (UTL) screening methods were implemented following U.S. Environmental Protection Agency (USEPA) guidance for specifying error rates. The simulations show that hypothesis testing using two-sample t-tests can meet standard performance criteria under a wide range of conditions, even with relatively small sample sizes. Key factors that affect the performance include unequal population variances and small absolute differences in population means. UTL methods are generally not recommended due to conceptual limitations in the technique when applied to ISM data sets from single decision units and due to insufficient power given standard statistical sample sizes from ISM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/risa.12820 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!