Proton magnetic resonance spectroscopy (H-MRS) has shown promise in distinguishing recurrent high-grade glioma from posttreatment radiation effect (PTRE). The purpose of this study was to establish objective H-MRS criteria based on metabolite peak height ratios to distinguish recurrent tumor (RT) from PTRE. A retrospective analysis of magnetic resonance imaging and H-MRS data was performed. Spectral metabolites analyzed included N-acetylaspartate, choline (Cho), creatine (Cr), lactate (Lac), and lipids (Lip). Quantitative H-MRS criteria to differentiate RT from PTRE were identified using 81 biopsy-matched spectral voxels. A receiver operating characteristic curve analysis was conducted for all metabolite ratio combinations with the pathology diagnosis as the classification variable. Forward discriminant analysis was used to identify ratio variables that maximized the correct classification of RT versus PTRE. Our results were applied to 205 records without biopsy-matched voxels to examine the percent agreement between our criteria and the radiologic diagnoses. Five ratios achieved an acceptable balance [area under the curve (AUC) ≥ 0.700] between sensitivity and specificity for distinguishing RT from PTRE, and each ratio defined a criterion for diagnosing RT. The ratios are as follows: Cho/Cr > 1.54 (sensitivity 66%, specificity 79%), Cr/Cho ≤ 0.63 (sensitivity 65%, specificity 79%), Lac/Cho ≤ 2.67 (sensitivity 85%, specificity 58%), Lac/Lip ≤ 1.64 (sensitivity 54%, specificity 95%), and Lip/Lac > 0.58 (sensitivity 56%, specificity 95%). Application of our ratio criteria in prospective studies may offer an alternative to biopsy or visual spectral pattern recognition to distinguish RT from PTRE in patients with gliomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-017-2407-y | DOI Listing |
Am J Sports Med
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Background: Knee injuries resulting in purely cartilaginous defects are rare, and controversy remains regarding the reliability of chondral-only fixation.
Purpose: To systematically review the literature for fixation methods and outcomes after primary fixation of chondral-only defects within the knee.
Study Design: Systematic review; Level of evidence, 5.
Am J Sports Med
January 2025
Department of Orthopaedic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea.
Background: Studies are still limited on the isolated effect of retear after arthroscopic rotator cuff repair (ARCR) on functional outcomes after the midterm period.
Purpose: To assess the effect of retear at midterm follow-up after ARCR and to identify factors associated with the need for revision surgery.
Study Design: Cohort study; Level of evidence, 3.
Eur J Hum Genet
January 2025
Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.
View Article and Find Full Text PDFSci Rep
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran.
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!