The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cs00153c | DOI Listing |
J Mater Chem A Mater
August 2023
Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94T9PX Republic of Ireland
Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous.
View Article and Find Full Text PDFChem Sci
July 2020
Department of Chemical Sciences , Bernal Institute , University of Limerick, Limerick V94 T9PX , Republic of Ireland . Email:
Separation of the C8 aromatic isomers, -xylene (PX), -xylene (MX), -xylene (OX) and ethylbenzene (EB), is relevant thanks to their widespread application as chemical feedstocks but challenging because of their similar boiling points and close molecular dimensions. Physisorptive separation could offer an energy-efficient solution to this challenge but sorbents which exhibit strong selectivity for one of the isomers remain a largely unmet challenge despite recent reports of OX or PX selective sorbents with high uptake capacity. For example, the square lattice, , topology coordination network exhibits the rare combination of high OX selectivity and high uptake capacity.
View Article and Find Full Text PDFChem Soc Rev
June 2017
Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!