A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Applying Quantitative CT Image Feature Analysis to Predict Response of Ovarian Cancer Patients to Chemotherapy. | LitMetric

Rationale And Objectives: The study aimed to investigate the role of applying quantitative image features computed from computed tomography (CT) images for early prediction of tumor response to chemotherapy in the clinical trials for treating ovarian cancer patients.

Materials And Methods: A dataset involving 91 patients was retrospectively assembled. Each patient had two sets of pre- and post-therapy CT images. A computer-aided detection scheme was applied to segment metastatic tumors previously tracked by radiologists on CT images and computed image features. Two initial feature pools were built using image features computed from pre-therapy CT images only and image feature difference computed from both pre- and post-therapy images. A feature selection method was applied to select optimal features, and an equal-weighted fusion method was used to generate a new quantitative imaging marker from each pool to predict 6-month progression-free survival. The prediction accuracy between quantitative imaging markers and the Response Evaluation Criteria in Solid Tumors (RECIST) criteria was also compared.

Results: The highest areas under the receiver operating characteristic curve are 0.684 ± 0.056 and 0.771 ± 0.050 when using a single image feature computed from pre-therapy CT images and feature difference computed from pre- and post-therapy CT images, respectively. Using two corresponding fusion-based image markers, the areas under the receiver operating characteristic curve significantly increased to 0.810 ± 0.045 and 0.829 ± 0.043 (P < 0.05), respectively. Overall prediction accuracy levels are 71.4%, 80.2%, and 74.7% when using two imaging markers and RECIST, respectively.

Conclusions: This study demonstrated the feasibility of predicting patients' response to chemotherapy using quantitative imaging markers computed from pre-therapy CT images. However, using image feature difference computed between pre- and post-therapy CT images yielded higher prediction accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875685PMC
http://dx.doi.org/10.1016/j.acra.2017.04.014DOI Listing

Publication Analysis

Top Keywords

image feature
12
image features
12
pre- post-therapy
12
post-therapy images
12
applying quantitative
8
quantitative image
8
ovarian cancer
8
features computed
8
computed pre-therapy
8
pre-therapy images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!