Thermal desalination membranes: Carbon nanotubes keep up the heat.

Nat Nanotechnol

Chanhee Boo and Menachem Elimelech are in the Department of Chemical &Environmental Engineering and at the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, USA.

Published: July 2017

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2017.114DOI Listing

Publication Analysis

Top Keywords

thermal desalination
4
desalination membranes
4
membranes carbon
4
carbon nanotubes
4
nanotubes heat
4
thermal
1
membranes
1
carbon
1
nanotubes
1
heat
1

Similar Publications

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Interfacial solar steam generation (ISSG) employed for seawater desalination and wastewater purification shows great promise to alleviate global freshwater scarcity. However, simultaneous optimization of water transfer direction in a cost-effective and reliable ISSG to balance thermal localization, salt accumulation, and resistance to oilfouling represents a rare feat. Herein, inspired by seabird beaks for unidirectional water transfer, eco-friendly and cost-effective plant extracts, sodium alginate, and tannic acid, are selected for crafting an innovative Sodium Alginate-Tannic Acid Hemispheric Evaporator (STHE).

View Article and Find Full Text PDF

Laser processing materials for photo-to-thermal applications.

Adv Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.

Photothermal conversion materials (PCMs) are crucial component in solar-thermal energy technologies. Although various PCMs with excellent sunlight harvesting have been developed for colorful solar-thermal applications, uniform and large-scale production of PCMs remains a challenge, and the PCMs prepared through the conventional methods are often non-site specific. Laser processing technology (LPT), as an efficient, convenient, green and sustainable technology, can directly create micro/nano structures and patterns at specific locations on materials surface, attracting widespread attention in photo-to-thermal applications.

View Article and Find Full Text PDF
Article Synopsis
  • The report highlights the efficiency of SbSe nanorods (NRs) in converting light to heat for solar thermal applications, achieving around 57.8% efficiency with specific lasers and heating hybrid membranes to ≈59°C in just 15 minutes.* -
  • Despite their advantages, SbSe NRs have a limited evaporation rate due to hydrophobicity, which restricts water movement to the heated areas, leading to less effective solar evaporation.* -
  • A new macro-channel imprinting technique improves water transport in these hybrid membranes, boosting evaporation efficiency to ≈148% under strong lighting and achieving effective heavy metal removal from water, meeting WHO standards for safe drinking water.*
View Article and Find Full Text PDF

Interaction mechanisms between fouling and chemical cleaning on the ageing behavior of ion-exchange membranes during electrodialysis treatment of flue gas desulfurization wastewater.

Water Res

November 2024

Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China. Electronic address:

Article Synopsis
  • Chemically irreversible fouling (CIF) and chemical erosion significantly affect the performance and properties of ion-exchange membranes (IEMs) used in desalination, leading to a phenomenon known as membrane ageing.
  • The ageing process consists of three stages where desalination rates initially decrease, then increase, and finally decline again, largely influenced by contaminants like anionic polyacrylamide (APAM) and calcium sulfate (CaSO).
  • CIF limits cleaning efficiency and alters membrane structure, while chemical erosion damages functional groups and the polymer matrix, affecting key attributes like ion exchange capacity and mechanical strength, thus ultimately influencing the membranes' fouling behaviors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!