Clear cell renal cell carcinomas (ccRCCs) frequently exhibit inactivation of the von Hippel-Lindau tumor-suppressor gene, VHL, and often harbor multiple copy-number alterations in genes that regulate cell cycle progression. We show here that modeling these genetic alterations by combined deletion of Vhl, Trp53 and Rb1 specifically in renal epithelial cells in mice caused ccRCC. These tumors arose from proximal tubule epithelial cells and shared molecular markers and mRNA expression profiles with human ccRCC. Exome sequencing revealed that mouse and human ccRCCs exhibit recurrent mutations in genes associated with the primary cilium, uncovering a mutational convergence on this organelle and implicating a subset of ccRCCs as genetic ciliopathies. Different mouse tumors responded differently to standard therapies for advanced human ccRCC, mimicking the range of clinical behaviors in the human disease. Inhibition of hypoxia-inducible factor (HIF)-α transcription factors with acriflavine as third-line therapy had therapeutic effects in some tumors, providing preclinical evidence for further investigation of HIF-α inhibition as a ccRCC treatment. This autochthonous mouse ccRCC model represents a tool to investigate the biology of ccRCC and to identify new treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509015PMC
http://dx.doi.org/10.1038/nm.4343DOI Listing

Publication Analysis

Top Keywords

vhl trp53
8
trp53 rb1
8
clear cell
8
cell renal
8
renal cell
8
epithelial cells
8
human ccrcc
8
ccrcc
6
cell
5
combined mutation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!