Background: Microflora of the gastrointestinal tract plays important roles in food digestion, nutrient absorption and in host defense against ingested pathogens. Several studies have focused on the microflora of farmed fishes, but the gut flora of wild fishes remains poorly characterized. The aim of this work was to provide an overview of the bacteria colonizing the gut of wild-caught fishes and to determine whether some bacterial species can be pathogenic.
Results: We isolated cultivable bacteria from fifteen wild-caught Mediterranean fish species corresponding to different habitat, diet and origin. Bacterial species identity was determined by 16s rRNA gene sequencing for the 61 isolates. The potential pathogenicity of isolated bacteria was investigated using fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) as model organisms. Two bacterial strains (Serratia sp. and Aeromonas salmonicida) were lethal when microinjected to Drosophila, while zebrafish did not develop any disease when exposed to any of 34 isolated bacterial strains. However, it was interesting to note that two bacterial strains (Shewanella and Arthrobacter) isolated from marine fishes were able to colonize the guts of freshwater zebrafish.
Conclusion: The results of this study give an overview of the bacterial species found in the guts of wild fishes living off Beirut seashore. It shows that some parameters believed to be limiting factors to host-gut colonization by bacteria can be overcome by some species. This pilot study could be extended by sampling a larger number of fish species with several specimens per fish species, and by identifying uncultivable bacteria that reside in the fish guts. Our results may have implications for the utilization of certain bacterial species in fish farming or their use as bio-indicators for water and/or food quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427772 | PMC |
http://dx.doi.org/10.2174/1573401313666170216165332 | DOI Listing |
Viruses
December 2024
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Laboratory of Anatomy & Physiology of Farm Animals, Agricultural University of Athens, 11855 Athens, Greece.
Vaccine adjuvants are crucial for reinforcing the immunogenicity of vaccines. Therefore, they are widely used in the aquaculture sector as vaccine components, facilitating the efficient prevention of infectious diseases and promoting sustainable teleost fish growth. Despite their benefits, there has been a growing concern about the potential adverse effects of vaccine adjuvants in teleost fish, connoting a valid impact on their overall health and welfare.
View Article and Find Full Text PDFToxics
December 2024
Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou 515063, China.
With the rapid industrialization and urbanization of coastal areas, marine pollution (such as heavy metals) is increasingly contaminating the environment, posing significant public health risks. Eastern Guangdong, a key aquaculture and fisheries hub in China, has a growing market for aquatic products. Heavy metals persist in the environment and are difficult to degrade and bioaccumulate in marine organisms through the food web, presenting carcinogenic and mutagenic risks to humans, as top predators.
View Article and Find Full Text PDFMicroorganisms
November 2024
Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, Eilat 8811201, Israel.
The red spotting disease harms sea urchins to the extent of mass mortality in the ocean and echinocultures, accompanied by environmental damage and economic losses. The current study emphasizes the antimicrobial resistance of three isolated bacteria, closely related to , , and , associated with red spotting in the cultured sea urchin . In vitro trials examined the susceptibility of these bacterial isolates to various antibiotics.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil.
is an important pathogen responsible for cases of high mortality in farmed and wild fish worldwide. In Brazil, this bacterium has been commonly associated with outbreaks in Nile tilapia farms, but other native fish species are also susceptible. Since floating cages are one of the most common culture systems used in the country, the close contact between farmed tilapia and native fish species presents a risk concerning the transmission of this pathogen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!